
Operating SECDED-Based Caches at Ultra-Low
Voltage with FLAIR

Moinuddin K. Qureshi

Georgia Institute of Technology

Atlanta, GA, USA

moin@ece.gatech.edu

Zeshan Chishti

Intel Labs

Hillsboro, Oregon, USA

zeshan.a.chishti@intel.com

Abstract—Voltage scaling is often limited by bit failures
in large on-chip caches. Prior approaches for enabling cache
operation at low voltages rely on correcting cache lines with multi-
bit failures. Unfortunately, multi-bit Error Correcting Codes
(ECC) incur significant storage overhead and complex logic.
Our goal is to develop solutions that enable ultra-low voltage
operation while incurring minimal changes to existing SECDED-
based cache designs. We exploit the observation that only a small
percentage of cache lines have multi-bit failures. We propose
FLexible And Introspective Replication (FLAIR) that performs
two-way replication for part of the cache during testing to
maintain robustness, and disables lines with multi-bit failures
after testing. FLAIR leverages the correction features of existing
SECDED code to greatly improve on simple two-way replication.
FLAIR provides a Vmin of 485mv (similar to ECC-8) and
maintains robustness to soft-error, while incurring a storage
overhead of only one bit per cache line .

I. INTRODUCTION

Energy efficiency is becoming the single most important
design constraint for computing systems. Successive gen-
erations of microprocessors have relied on supply voltage
reduction as one of the most effective techniques to reduce the
power consumption of a microprocessor. However, as supply
voltage continues to decrease, the effects of semiconductor
process variations become more pronounced, resulting in in-
creased circuit failures. These failures limit the safe operating
voltage of a microprocessor to a value Vmin, beyond which
the processor ceases to operate reliably. Failures in large
memory structures, such as caches, which dominate the die
area, typically determine the Vmin for a processor [14]. For
example, for the baseline 8MB L3 cache, the Vmin would be
limited to approximately 850 mv.

Several recent papers have proposed architecture-based
techniques to improve the reliability of large caches at low
operating voltages [1][2][3][6][11][14][13]. These techniques
allow cache bits to fail, but use additional redundancy, such
as multi-bit error correcting codes (ECC) to tolerate high bit
failure rates. Figure 1 shows the Vmin for our baseline 8MB
L3 cache as the error correction level is changed on a per-
line basis. We denote ECC-N as an error correction scheme
that can correct up-to N errors in the line. Vmin reduces as
the ECC strength per line is increased. We define ultra-low
voltage to be a region below 500mv, which needs ECC-7 or
higher level of ECC.

We want to operate the cache at well within the ultra
low voltage region (say 485mv) so we will need the capa-
bility of ECC-8 to support such an aggressive Vmin target.
Implementing such high levels of error correction requires

ULTRA LOW VOLTAGE

500mv

ECC−6 ECC−5

540mv490mv480mv 510mv 520mv 530mv

GOAL VS−ECC

ECC−7ECC−8

Fig. 1. Impact of ECC on Vmin. To operate in an ultra low voltage regime
(sub 500mv) we need ECC-7 or stronger code. Our goal is to obtain Vmin
of 485mv, without incurring significant hardware or latency overheads for a
SECDED-based cache.

significant storage overhead for ECC check bits and complex
logic for ECC encoding and decoding. Higher levels of ECC
also reduces performance because of the long latency of
ECC decoding. Thus, the storage, complexity, and latency
overhead of multi-bit ECC make it less appealing for practical
implementation. From a commercial viewpoint, it is desirable
to have a single mainstream chip (say designed for high
performance operation) which can still be made to work in
low voltage domains with minor changes to existing design.

Given that existing caches already employ Single-Error-
Correcting Double-Error-Detecting (SECDED) codes to toler-
ate single bit failures due to soft errors (such as [5], [12]),
we would like to leverage this existing hardware to tolerate
both hard errors due to low voltage operation in addition to
soft errors. Ideally, we would like to have a practical hardware
solution that satisfies the following six requirements:

1) It should enable the cache to operate at ultra-low
voltage, say 485 mv in our case.

2) It should incur negligible storage overhead and almost
no changes to the existing hardware. This rules out
prior schemes that rely on multi-bit ECC.

3) It should be robust to soft errors, without relying
on additional storage overhead (we want to maintain
error tolerance at-least at the level of SECDED).

4) It should provide almost all of the cache capacity
(> 90%) during normal program execution.

5) It should have a cache access latency similar to
baseline during the normal program execution (this
again eliminates multi-bit ECC due to high latency).

6) It should not rely on having non-volatile memory on-
chip or require software changes for deployment.

This paper proposes a scheme that satisfies all the six
requirements. To devise our solution, we exploit the insight
that even at ultra low voltages only a very small percentage
of cache lines have multi-bit failures [2], [13]. Table I shows

978-1-4799-0181-4/13/$31.00 ©2013 IEEE

the percentage of cache lines that have zero error, one error,
or two-or-more errors at the target Vmin of 485mv1 For our
target Vmin, less than 10% of the lines would have more than
one-bit error. If we can identify such faulty lines, then we can
enable low-voltage operation by disabling these lines.

TABLE I. LINE FAILURE STATISTICS AT 485MV

Percentage lines with
0-Error 1-Error 2+ Errors

60.0% 30.7% 9.3%

A recent study, Variable Strength ECC (VS-ECC) [2], pro-
posed a mechanism to perform runtime testing to characterize
the error level of each line and allocate appropriate amount
of ECC for each line. Unfortunately, the runtime test runs
for a long time (several tens of seconds) and VS-ECC still
relies on operating a quarter of the cache with high-strength
ECC-4 during the testing phase. Thus, the Vmin obtained
with VS-ECC is limited by ECC-4 and it still incurs the
storage overhead (albeit for only quarter of the cache) and logic
complexity of expensive multi-bit ECC decoding. As we seek
a Vmin of 485mv, we would need to extend VS-ECC to have
ECC-8 in the quarter of the cache during testing phase, further
exacerbating the storage, latency, and complexity overheads.

In this paper, we obviate the need for storage and logic for
multi-bit ECC. Instead, we use the existing cache structure for
reliable operation during testing phase. We call this proposal
FLexible Replication (FLexR, pronounced as “flexer”) as
replication is enabled only during the testing phase (to tolerate
multi-bit errors) and disabled during the post-testing phase (to
provide more cache capacity). As Dual Modulo Replication
(DMR) is effective only at detecting faults, but not at correcting
them, we modify the cache architecture during testing phase
to make error detection as the primary objective instead of
error correction. We do this by making the cache write through
during the testing phase (for the post testing phase the cache is
still used as a write-back cache). If the DMR check of FLexR
detects an uncorrectable error during the testing phase, FLexR
simply invalidates both lines in the pair and reads the value
from memory.

We found that simple two-way replication (even after per-
line correction of SECDED) is unable to tolerate more than
three errors in the pair, and is vulnerable to soft-error. We
enhance the robustness of FLexR by leveraging the observation
that each line in the pair undergoes SECDED operation and
we can use the SECDED status of each line in DMR (whether
the line is good, or has a correctable error, or has a detectable
but uncorrectable error) for improved robustness. We propose,
FLexible And Introspective Replication (FLAIR) which per-
forms a self-check (introspection) on the SECDED status of
the line in addition to the DMR check. FLAIR can ignore
the output of the DMR comparison, depending on SECDED
correction status of each line in the DMR group. We show
that FLAIR is robust at Vmin of 485mv and can tolerate soft
errors both during the testing phase as well as during the post-
testing phase. Thus, FLAIR provides a Vmin similar to ECC-8,
without adding any extra storage (except one bit per line) and
incurring negligible complexity.

1Similar to previous studies, we assume that the Vmin is calculated at the
voltage at which one out of 1000 caches is expected to fail.

After the testing phase finishes, the two-way replication
gets disabled and the lines can be used for normal operation.
As shown in Table I, operating at a Vmin of 485mv would
result in 31% lines with one bit hard faults. Given the vulner-
ability of cache lines to soft errors, SECDED protection alone
will not be enough for such lines, and previous approaches
would argue for disabling such lines after the testing phase
finishes. Thus, during the normal operating phase the program
would get only 60% of the available cache capacity. We
observe that for the lines with only one hard error (31% of
the lines), if a single bit soft error strikes such a line, then
SECDED can still identify the error. We leverage this key
observation, and propose a Weak Line Reclamation (WLR)
scheme that restrict such lines to only store clean data. Thus, if
a soft error happens in a line with 1 hard error, the SECDED
mechanism identifies the fault. If the line is clean, we can
simply invalidate the line and read the copy from memory.
With WLR, the cache can retain more than 91% capacity
after the testing phase. Thus, our proposal enables low voltage
operation, at near full capacity, while incurring negligible
storage and logic overhead and maintaining tolerance to soft
errors, which makes practical to implement ultra low-power
mode in future processors.

II. BACKGROUND AND MOTIVATION

A. Impact of Cache Reliability on Vmin

Most of the modern microprocessors dedicate a majority
of their transistor budget to large SRAM caches. To guarantee
correct software execution, these large on-chip caches must
operate in an error-free manner. However, parametric variations
induced by the imperfections in semiconductor manufacturing
process make SRAM cells susceptible to failures. Figure 2
shows the bit failure data from [9], [6], which specifies the
failure probability of a single bit of cache at different supply
voltages. This data shows that bit failure rate increases with
reduction in supply voltage. Consequently, the supply voltage
of a microprocessor is often limited to a value Vmin, below
which the failure rate increases beyond the error mitigation
capability of the cache. The Vmin for a microprocessor product
is often specified as a function of acceptable yield loss. For
example, recent papers on reliable low voltage operation have
defined Vmin as the voltage at which at least 999 out of 1000
caches operate reliably.

Modern microprocessors often use multiple power modes
to execute in an energy-efficient manner. When higher perfor-
mance is desirable, the processor operates at a higher supply
voltage, whereas when performance is not as critical, the
processor transitions to a low voltage mode to save energy.
Therefore, reducing the Vmin of a processor is critical towards
enabling higher energy efficiency. However, mechanisms that
reduce Vmin should not have a significant impact on perfor-
mance during the high voltage execution mode.

B. Prior Work: Circuit Solutions and Dual VDD

Both circuit- and architecture-level solutions have been
proposed to mitigate bit failures at low voltages. Circuit
solutions typically make changes to the SRAM cell design to
neutralize the impact of process variations [9]. These schemes
either upsize the transistors or use cell design variants such

480 500 520 540 560 580 600 620 640 660 680 700 720 740 760 780 800 820 840
Vmin (mv)

-12
-11
-10
-9
-8
-7
-6
-5
-4
-3
-2
-1
0

L
O

G
1
0
(F

a
il

u
re

 P
ro

b
.)

Prob BitFail

Fig. 2. Probability of bit failure as a function of operating voltage. Bit failure data is derived from prior studies [9], [14], [6], [2]. Note that at the target
voltage of 485mv the probability of bit failure is 1 out of 996.

as the 8T, 10T, and ST SRAM cells. However, the resulting
Vmin reduction comes at the cost of significant increases in
area (e.g., 100% area increase for ST cell [9]). While such
solutions may work well for small caches (such as L1 and
L2), they incur impractical overhead for large last-level caches
(LLC). In our work, we will assume that L1, L2, and the LLC
tag-store are protected by such circuit techniques and focus on
practical solutions for LLC data-store (which tends to consume
majority of the on-chip transistors).

Another option is to use Dual-VDD, whereby cache and
core operates on different power supply circuits. Unfortunately,
Dual-VDD incurs significant area and complexity. Further-
more, if the core supply voltage is reduced significantly but
the LLC continues to run at a higher voltage, then the LLC
power starts to dominate the platform power.

C. Prior Work: Avoiding Faulty Cells with Fault Maps

If the data about which cells in the cache are faulty
is available then we can employ efficient error correction
to tolerate faulty cells. Architectural mechanisms for Vmin
reduction typically rely on such off-line information about cell
failures and trade-off cache capacity for increased reliability.
Wilkerson et al. [14], Roberts et al. [11], and Ansari et al. [4]
proposed techniques to disable defective portions of the cache
during the low voltage mode. These techniques sacrifice a
portion of the cache to either save the locations of defective
bits and the values of correct data, or pair faulty lines. These
techniques degrade performance at low voltages due to the
smaller cache capacity, incur higher latency due to parallel
accesses to demand lines and repair locations.

D. The Rationale for Avoiding Non-Volatile Fault-Maps

Most of the architectural work on making caches robust
at low voltages rely on having the faulty cell locations avail-
able. Unfortunately, passing this information from design time
testing to runtime system is non-trivial. This would require
that the processor chip be equipped with substantial amount
of non-volatile memory (few bits per cache line). Integrating
such large-scale non-volatile memory on-chip would require
embedding a separate technology, thus making such solutions
a high-cost and complex proposition. While current proces-
sor and memory designs do employ fuses to decommission
faulty storage (at large granularity), extending these fuses to

store faulty bit locations is quite expensive. For example, the
fuses that are use to disable DRAM rows incur an area of
approximately 5000 DRAM cells for each bit of fuse [7]. If we
translate this into SRAM overheads, each bit of fuse would cost
approximately few hundred SRAM cells, making it impractical
to employ such fuses on a per cache-line basis.

E. Runtime Testing and VS-ECC

While the need for having locations of faulty cells can be
avoided with multi-bit ECC (for example, as done by Chishti
et al. [6]), simply having high strength multi-bit ECC for all
lines is costly in terms of area, latency and complexity. A
recent paper proposed Variable-Strength ECC (VS-ECC) [2],
which addresses the limitations of previous ECC solutions by
using the ECC budget in a non-uniform manner.

VS-ECC dedicates SECDED ECC to each line for soft
error mitigation, while using additional ECC check bits to
protect 4 out of 16 cache lines in each set from up to 4
bit failures. To identify lines with multi-bit failures, VS-ECC
runs a testing phase before each transition to the low voltage
mode. During the testing phase, VS-ECC stresses each line
with different pre-determined testing patterns to uncover the
different modes of bit failures. It was shown that several tens of
seconds of testing is required to achieve acceptable coverage.

F. Need for Operational System During Runtime Test

Storing the testing information on disk requires software
support. In order to avoid such software changes, and to
provide periodic testing, VS-ECC recommended that testing
be performed whenever the machine restarts. Given that testing
requires few tens of seconds, this would increase boot time on
every power up and degrade user experience if the machine is
unavailable for few tens of seconds (e.g. think boot-up latency
of SSD vs HDD). Hence it is desirable to have a working
system even during testing.

To mitigate the performance overhead of the testing phase,
VS-ECC performs testing in a pipelined fashion. It divides
the cache into multiple portions and keeps one of the portions
active for normal program execution while the other portion(s)
is being tested. To tolerate bit failures in the active portion, VS-
ECC dedicates all the check bits for multi-bit correction to the
active portion. Since, only one quarter of the cache ways (4
out of 16) can be protected by multi-bit ECC, the size of the

active portion is limited to one quarter of the cache. Once the
testing phase finishes, the information collected during testing
is used to re-assign the check bits in proportion to the number
of errors in the line.

G. Need for a Practical Solution

Ideally we would like to have a solution that enables low
voltage operation of the processor chip without relying on
significant storage or logic overhead and causing negligible
changes to existing structures. Changing cache structure, and
implementing complex circuitry not only requires area over-
head but also entails effort from design, verification and testing
teams. We would like to minimize these overheads. Unfor-
tunately, all previous approaches, including VS-ECC, require
significant changes to existing cache structure (to add extra
ECC bits), and complex ECC decoding circuitry. Furthermore,
because VS-ECC uses ECC-4 in the quarter of the cache during
testing time, its effectiveness is limited to Vmin obtained with
ECC-4 (540mv regime). We can obtain even lower Vmin and
avoid the hardware changes required by VS-ECC if we can
use existing cache circuitry for reliable operation during the
testing phase and simply disable faulty lines during the normal
phase. Based on this insight, we propose FLexible Replication
(FLexR) that performs dynamic two-way replication of lines
for robustness during testing phase. We will first describe the
basic architecture of FLexR, before describing the enhanced
version our proposal in Section IV.

III. FLEXIBLE REPLICATION: DESIGN AND ANALYSIS

Similar to VS-ECC, our proposal relies on runtime testing
to identify faulty lines. However, unlike VS-ECC, it does not
need precise number of faults in the line and instead bins
the lines into three categories: no faults, exactly one fault,
and two-or-more faults. Testing is still performed in pipelined
fashion on a way-by-way basis. As testing takes a long time
(50 seconds or more [2]), it is desirable to have at-least some
portion of the cache usable during the testing phase. Unlike
VS-ECC, which relies on having ECC-4 for a quarter of
the cache, our design relies on alternative low-cost means to
provide robustness during the testing phase.

LLC LLC

To MEMORY

TEST

WAYS
UNDER

TEST

WAYS
UNDER

To MEMORY

WR DATA

WR ADDRREAD ADDR

DATA ERROR

DETECTED

Fig. 3. Basic architecture to support Flexible Replication. The data-flow is
shown only for the testing phase, for read (left) and for write(right).

A. Flexible Replication Architecture

One of the major design choice that we make to keep
FLexR simple and practical is to eliminate the presence of
dirty lines in the last level cache during the testing phase, as
shown in Figure 3. While this increases the traffic to memory,
we rely on two factors to keep this overhead manageable. First,
even if the LLC is used as write-through, the L2 cache is still

architected to be a writeback cache. So, only the dirty lines
evicted out of the L2 cache will be written to memory and
not the unfiltered stream emanating from the processor (we
found that with our write-through design, the memory traffic
during testing mode increased by 2% compared to VS-ECC on
average, See Appendix A). Second, the extra memory traffic
due to write through is incurred only during the testing phase
(which although is few tens of second, would be much smaller
than the up-time of the machine). After the testing phase, the
cache still operates as a write-back cache.

Making the cache write through in the testing phase has the
major advantage that it transforms the cache reliability problem
from an error-correction problem into a much more tractable
error-detection problem.

What we ideally want is a storage-efficient on-demand error
detection, that does not incur any storage overhead compared
to SECDED. Unfortunately, SECDED codes can detect only
up-to two errors.2 For our target operating Vmin a line can
have up-to 8 errors, therefore if we want to provision each
line with an error detection code, that code will require to
ensure that the minimum hamming distance between valid
code words is 9, and will incur a hardware overhead similar to
ECC-4, which we are trying to avoid. Another alternative is to
consider checksum codes or cyclic redundancy codes (CRC).
However, these codes can detect multi-bit faults efficiently
only if the errors happen in spatially close positions. For,
multi-bit errors that can happen randomly, simple CRC codes
and checksum codes are not effective at provide guaranteed
detection. Furthermore, we want to avoid the storage and logic
overheads associated in designing another coding scheme, in
addition to the existing SECDED.

Thus, we need a way to enable part of the cache with
multi-bit error detection capability without the storage and
logic overheads associated with typical multi-bit error detec-
tion schemes. We leverage the insight that during the testing
phase, only part of the cache is operational anyways, so we
can used the non-operational part for storage-efficient error
detection. We propose to replicate two lines in a Dual Modulo
Redundancy (DMR) fashion for error detection. While this
may seem to reduce the effective size to only half the cache
capacity, we note that prior VS-ECC proposal have enabled
only quarter of the cache capacity in order to provide cache
space during the testing phase. So, the effective cache capacity
with our design is higher than provided by VS-ECC.

B. Cache Structure with FLexR

Figure 4 shows one of the set of an 8-way set associative
cache with FLexR, where we have used DMR for error
detection. Ways 0 and 1 each store a copy of Line A; ways
2 and 3 each store a copy of Line B; and ways 4 and 5 each
store a copy of line C. Way 6 and 7 are not available as they
are undergoing testing. On a read access, the two lines in the
DMR pair are read, SECDED correction is performed on each
of the two lines. If SECDED detects a correctable failure, it

2In reality, SECDED codes can detect up-to three errors if we give up on
correction of lines with single bit failure. However, given that for our target
operating Vmin of 485mv we have about 30% of the lines with single bit
error. Therefore, the correction capability of SECDED is important even in the
testing phase, and hence we use per-line error correction storage as SECDED
instead of ZECTED (Zero Error Correction Triple Error Detection).

performs correction and then supplies a corrected copy of the
line for the DMR comparison. Whereas, if SECDED detects an
error that is uncorrectable it simply supplies the original value
(as correction is likely to increase the number of bit errors).
DMR is performed on the two lines on a bit-by-bit basis. If
at-least one of the bits do not match, then an error is detected
and the two lines in the DMR pair are both invalidated, and the
corresponding data line is read from memory. When an error
is identified, FLexR marks both lines in the pair as disabled
(using a cache line disable bit) during testing mode so that
we can avoid future invalidation on these lines.3 The logic
overhead of DMR checking is 512 two-input ex-or gates and
256 2-input OR gates, this logic complexity is almost an order
of magnitude lower than required for SECDED, and the latency
for this DMR check is approximately 9 FO4 (at-most one
processor cycle).

=SECDED

S S S S S S

S

0 1 2 3 4 5 6 7

A1 A2 B1 B2 C1 C2

UNDER TEST

SET

DMR

LINE A

Way Number

Fig. 4. One set of an 8-way set-associative cache that facilitates FLexR. The
first six ways provide 3 ways of DMR, the other two ways are reserved for
testing.

C. Pair Failure Rate at Target Vmin

Our baseline 8MB cache is 16-way, and contains 217 lines.
During testing mode we dedicate two ways for testing and use
the remaining 14 ways to implement DMR. Thus the total
number of pairs that must be supported during testing is 7

16
·

217. To guarantee that no more than 1 in a 1000 caches fail,
we would need to ensure that no more than one in every 1000 ·
7

16
·217 = 225.7 pair can fail. Thus, we seek an effective target

failure probability of the pair to be 2−25.7. We will call this
critical value as Target Pair-Failure (TPF).

Table II shows the probability of number of errors in the
pair of two lines (64 bytes each) at an operating voltage of
485mv. For the purpose of analyzing the vulnerability of DMR,
we need to consider only up-to four errors in the pair, hence
we club five or more errors into a single bin. Analysis with a
larger number of errors will be performed in Section IV.

TABLE II. EXPECTED NUMBER OF ERRORS IN THE PAIR AT 485MV (5+
DENOTES FIVE OR MORE ERRORS).

Num Errors in Pair
0 1 2 3 4 5+

35.9% 36.8% 18.8% 6.4% 1.6% 0.4%

Table II shows why DMR without SECDED correction
would not be very useful. DMR without SECDED would

3Note that such a disable with DMR is valid only before the pairs are tested.
After testing, we may chose to disable only one line in the pair.

cause failure if each line in the pair has one failed bit and
the positions of the faulty bits overlap. The vulnerability of
DMR without SECDED can be computed as a product of
three components: First, probability of two errors in the pair
(prob=18%). Second, the probability that each line in pair
will get one error each (prob=0.5). Third, the two bits will
land in the same position of two lines (prob=1/512). Thus,
the vulnerability of DMR is approximately 2−12, which is
much higher than the TPF we seek (2−25.7). Furthermore, if
we want soft error tolerance, then DMR without SECDED
may cause fault even if the pair has one hard fault (if the soft
error happens in the other line in the pair at the same position).
Thus, DMR alone (without SECDED) falls quite short in terms
of robustness for our requirements.

D. Shortcoming of FLexR

FLexR uses SECDED correction before employing DMR.
While SECDED is effective in correcting one-bit errors, it does
not attempt to correct lines with two errors (as miscorrection
can increase the number of errors in the line, and the position
of the miscorrected bit would depend on data value). We
analyze the detection capability of FLexR under two settings:
with and without soft-error tolerance.

For DMR to cause failure the component lines must have at
least one failed bit after SECDED correction. Thus, for DMR
to fail, we need at-least two erroneous bits per line. The most
dominant failure case would then be when the pair has four
errors, each line gets two errors, and those the positions of the
errors overlap, as shown in Figure 5.

X

Line−0

Line−1

X

X

X

X

= Hard Error

Fig. 5. Dominant mode of failure for a pair with FLexR, if we consider only
hard errors.

Thus, failure probability of FLexR can be computed as the
product of three components. First, the probability that the pair
has four errors (prob: 1.6%). Second, each line gets two errors
each (prob: 6/16). Third, the position of errors overlap in the
two lines (prob: 2

512·511
). Thus, the vulnerability of a given

pair under these conditions is equal to 2−24.5, which is higher
than our TPF of 2−25.7. While this difference may seem small
(a difference of only about 2x), this analysis assumes that hard
errors are the only source of vulnerability and does not take
into account soft errors.

We want our solution to not compromise on soft error
tolerance at all compared to SECDED. Therefore, we have
to provision for the case that any bit in the line can get a
fault due to soft error. Given the low rate of soft-error we will
assume that there can be at-most one error in the pair. When
we include the vulnerability to soft-error in our analysis, the
dominant failure case for FLexR is when the pair has 3 errors,
there is a (1,2) split of errors between the two lines in the
pair, and the position of error in 1 error line overlaps with the
position of error of one of the two errors in the line with 2

errors. Then, if a soft-error strikes the line with 1 error, in a
position overlapping with the second error in the 2-error line,
FLexR will be unable to detect this error, as shown in Figure 6.

S?

= Hard Error S= Soft Error

Line−0

Line−1

X

X

X

X

Fig. 6. Dominant mode of failure for a pair with FLexR, considering both
hard and soft error.

The vulnerability in this case can be calculated as the
product of three components. First, the pair has three failure
(prob: 5.9%). Second, one line gets two errors and the other
gets one error (prob: 6/8). Third, there are two errors in the
same bit position (prob: 2/512). Thus, the overall vulnerability
is approximately 2−14 which is almost an order of magnitude
higher than the TPF we seek 2−25.7.

In summary, employing simple DMR after SECDED, as
done with FLexR, is not sufficient to provide 485mv operation
while tolerating soft errors. The next section describes a simple
and effective extension that can provide reliable operation at
485mv while maintaining soft-error resilience.

IV. FLEXIBLE AND INTROSPECTIVE REPLICATION

One of the common case of failure of FLexR happens
when both lines in the DMR pair have a detectable error.
To enhance the detection capability of FLexR, we observe
that FLexR does not utilize the correction status of SECDED.
We could obtain improved robustness in such a scenario by
noting that two lines in the pair had an uncorrectable error,
and simply indicating that the pair has an undetectable error,
rather than providing the incorrect data. Based on this insight,
we propose FLexible And Introspective Replication (FLAIR).
FLAIR performs Flexible Replication (DMR is employed only
in the testing phase and disabled during the normal mode)
and Introspective Replication (SECDED status of each line is
checked for decision making). Before we discuss the detection
algorithm of FLAIR, we will first provide the basic working
of SECDED code as the number of errors in the line is varied
(Figure 7). This understanding is the key in developing the
effective detection algorithm of FLAIR.

A. A Primer on SECDED Code

We will limit our discussion to SECDED implementations
based on Hamming code. Hamming codes can perform error
correction by adding a few extra bits (called check bits) to
the data word, and this combination of data-word and check-
bits is called a codeword. The check bits are determined as a
parity over a subset of data-bits and the parity bits. The key
to hamming code is to have the parity bits overlap, such that
they manage to check each other as well as the data.

In order to correct a single erroneous bit, we need that
the valid code words are at least a hamming distance of three
away from each other. In that case, if one error occurs, then the
regeneration of parity bits (called syndrome) will indicate the

position of the bit that has failed. A zero syndrome indicates
that there is no error detected (bit positions are numbered from
1 onward). For implementing such a Single Error Correcting
(SEC) code for data-word consisting of N bits, we need 1 +
log2(N) check-bits. Thus, implementing SEC for a line with
512 bits requires 10 check bits.

GP

SYNDROME

CHECK−BITS

SEC CODE
GLOBAL
PARITY

SECDED

MATCH

DATA BITS

Fig. 8. Typical structure of SECDED, consisting of SEC and global parity.
SYNDROME indicates error-position and MATCH indicates global-parity
agreement.

As SEC has a minimum distance of 3, it can either only
correct 1 bit error or detect 2 bit error but not both. To extend
SEC to have guaranteed double error detection, we add a
global parity bit GP which tracks the parity over both the
data-word and check-bits, as shown in Figure 8. If there are
two errors in the (data-word+check-bits) the SEC will provide
a non-zero syndrome (possibly causing error in an error free
bit). However, if there are 2 errors then the GP bit will result
in a parity match, indicating either zero or even number of
errors. Given non-zero syndrome for SEC we know that the
number of errors is the codeword is non-zero, and we can flag
a detectable-but-uncorrectable error with SECDED.

For SECDED, the codewords are at least a distance of 4
from each other. However, this does not mean that the valid
code word are placed exactly at a distance of 4, they may be
placed at any distance greater than or equal to 4. For our work,
we analyze what happens to SECDED at a distance larger than
4, as shown in Figure 7.

The operation of SECDED can be generalized to any
number of errors. If there is a GP match, and SEC indicates
zero syndrome, then SECDED estimates such a line to have no
error. If GP indicates mismatch, and SEC indicates non-zero
syndrome then SECDED estimates that this is a correctable
error. If the parity and syndrome do not agree (one indicates no
error, and the other indicates error) then SECDED can denote
such lines as detectable-but-uncorrectable error lines.4

B. Classifying Lines Based on SECDED Status

SECDED is based on two outcomes: one from SEC and
second from GP. Based on the result of these two outcomes, the
lines can be classified into one of three types after SECDED
correction:

1) Good Line (G Line): Indicates a line for which
SECDED estimates no error. It will not modify
the contents of the line. This estimation if correct

4When GP indicates mismatch but SEC provides non-zero syndrome, this
can happen if there is a single bit error only in the GP bit. During the testing
phase we will pessimistically assume that a strike only on the GP bit still
results in an uncorrectable error. During the post-testing phase the SECDED
logic can ignore the error if GP indicates a mismatch and SEC syndrome is
zero (as this will happen either for a triple bit error or error only in GP, and
we do not expect 3-bit errors in the same line during the post-testing mode).

OR OR OROR

1 52 3 4 6

OR DETECTION

SILENT ERROR

VALID
CODEWORD

CORRECTION

Hamming Distance from Valid Codeword

SILENT ERROR

OR DETECTION
NO ERROR

SYNDROME
SEC

GLOBAL
PARITY

SECDED

OUTCOME

MISCORRECTION

OR DETECTION OR DETECTION
DETECTION MISCORRECTION

Fig. 7. Dissecting Hamming code based SECDED for introspective replication. For SEC a checkmark indicates zero syndrome and cross indicates non-zero
syndrome. For global parity, a check indicates parity matches and a cross indicates mismatch. The status of SEC and GP considered separately can be used to
detect a class of multi-bit errors.

signifies a good line, and we denote such a line as
G+ line. However, if it is incorrect (4 or 6 or 8 etc.
errors) then this line will be incorrectly regarded as a
fault-free line resulting in silent error, and we denote
such a line as a G- line.

2) Correctable Line (C Line): Indicates a line that has
an odd number of errors. If there is one bit error,
SECDED will correct the error, and we denote such a
line as a C+ line. However, if the line has more than
one errors then SECDED will cause miscorrection,
and the number of errors in the line would increase
by one, and we denote such a miscorrected line as a
C- line.

3) Detectable Line (D Line): Indicates a line that has an
either two or more error, and the syndrome and parity
mismatch. SECDED does not modify the contents of
a D line.

On a read access, the two lines in the DMR pair are
sent through the SECDED circuit. We augment the SECDED
circuit to provide the line type as deemed by SECDED (G,C,or
D). This line type information is used to drive the detection
decision of FLAIR.

C. Detection Algorithm of FLAIR

FLAIR relies on two levels of error detection, as shown
in Figure 9. First, the status of the SECDED and second
DMR. The overall detection mechanism of FLAIR can be
tuned towards high robustness or more cache capacity. For
example, we can implement FLAIR in a conservative fashion
where DMR is performed only if both lines are estimated to
be G lines from SECDED. However, from Table II we observe
that 39% of the pairs are expected to have one error, therefore
this simple approach will discard almost one-third of the pairs
in testing mode.5 Therefore, we chose to have capability to
correct at-least one error in the pair. The detection algorithm
for FLAIR we employ is to rely on the DMR check only if
the pair has at-least one G line. Otherwise, the pair is deemed
as faulty, without the need to check DMR.

5The capability of correcting one error in each of the two lines is not as
essential as it has much smaller impact on capacity. This can be computed as
the product of: probability that the pair has two errors (prob=18%) and the
probability that both lines will get one error each (prob=50%), so a capacity
loss of 9% of the total pairs

PAIR HAS
AT−LEAST

A

B

SECDED
STATUS

YES DMR

MATCH?

YES
DATA

NO NO

DETECTED
UNCORRECTABLE ERROR

A BA
LINE AFTER SEC

1 "G" LINE?
INPUTS

Fig. 9. The two-phase detection algorithm of FLAIR. DMR is employed
only if SECDED estimates that at-least one line is a G line (in reality it may
be G- or G+).

D. Robustness of FLAIR to Multi-bit Errors

To assess the vulnerability of FLAIR to multi-bit errors, we
will consider case by case the number of of errors in a pair. To
separate the effect of mechanism robustness from bit failure
probabilities, we will divide the analysis into two parts. First,
we will compute the FLAIR Vulnerability Factor (FVF), which
indicates the probability that if a given multi-bit error event
happens, what is the likelihood that FLAIR will not be able
to detect it. We can multiply FVF to Raw Event Probability
(REP) (which will be a function of operating voltage) to get the
Event Vulnerability Factor (EVF) for that event. For analysis
with soft-error strike and miscorrection of SECDED, we will
be overly pessimistic in our calculations, and assume that these
events will always flip the most vulnerable bit.

1) Pair has up-to 5 errors: FLAIR failure probability is
zero. FLAIR needs at least one line to be G- (which
needs at least four errors). If the pair has 5 errors, and
one line has four errors (for G-) then the other line
will have 1 error and SECDED will repair the line.
DMR will detect error between the corrected line and
the fault line. Thus, FVF for this case is 0.

2) Pair has 6 errors: Failure can occur if one line has
4 errors (G- line) and the other line has the two error
positions overlap. Then, if a soft error strike happens
in the position of third error, and it gets miscorrected
such that the new error is in the position of fourth
error. The probability that there is a (2,4) split of 6
errors is 30

64
, and the probability that the positions of

the two errors match can be computed6 as 12

523·522
.

6For a line with 512 bits, SECDED would require 11 bits, so the total
number of bits in the protected line is 523.

TABLE III. COMPUTING THE VULNERABILITY OF FLAIR FOR DIFFERENT NUMBER OF ERRORS IN THE PAIR.

Num Errors in Pair Raw Event Prob. FLAIR Vulnerability Factor Event Failure Probability
(REP) at 485mv (FVF) (EVF=REP*FVF)

0-5 99.99% 0 0

6 2
−10.8

2
−15.5

2
−26.3

7 2
−13.5

2
−23.4

2
−37

8 2
−16.5

2
−33.4

2
−50

9 2
−19.6

2
−33.2

2
−52

10 2
−23.0

2
−29.0

2
−52

11+ 2
−26.4

≪ 2
−20

≪ 2
−46

Sum of EVF 2
−26.3

TABLE IV. COMPARISON OF VARIOUS PROTECTION SCHEMES FOR BASELINE 8MB CACHE.

NoECC ECC-1 ECC-4 ECC-8 VS-ECC* FLAIR

Vmin 849mv 684 mv 546mv 487mv 538mv 485mv
Soft error tolerance Extra Extra Extra Extra Extra Included

Thus, FVF for this case is 2−15.6.
3) Pair has 7 errors: To get a G- line, one line must

have four errors, therefore the other line must have
three errors. Failure would occur when the line with
3 errors gets miscorrected (or through a soft error
strike) into a line with 4 errors. The probability that
7 errors cause a (4,3) split is 70

128
, and the probability

that there will be overlap of the 3 three-error bits in
two lines is 24

523·522·521
. Note that for other splits such

as (5,2), DMR will be effective and thus avoid silent
error. Thus, the FVF for this case is 2−23.4.

4) Pair has 8 errors: Given that we need at-least one
G- line, one line must have either 4 or 6 errors.
A (6,2) split will be detected by DMR. Thus, the
vulnerable case is only when there is a split of (4,4).
The probability that we will get a (4,4) split in 8
errors is 70

256
. The probability that the errors in both

lines will overlap is 24

523·522·521·520
. Thus, the FVF

for this case is 2−33.
5) Pair has 9 errors: For failure there must be at-least

one G- line, so one line must have either 4 or 6 errors.
A (6,3) split will be detected by DMR. Thus, the
vulnerable case is only when there is a split of (4,5)
and the line with 5-errors gets changed to 4 bit-error
line, either by soft error strike or miscorrection. The
probability that we will get a (5,4) split in 9 errors
is 0.5. The probability that there will be overlap of 4
errors in both lines is 120

523·522·521·520
. Thus, the FVF

for this case is 2−33.
6) Pair has 10 errors: For failure there must be at-least

one G- line, so one line must have 4 errors and the
other 6 errors. The line with 4 error can get alpha
particle strike, making it seem like 5 errors which
could get miscorrected to the line with 6 errors. The
probability that we will get a (5,4) split in 9 errors
is 0.5. The probability that there will be overlap of 4
errors in both lines is 120

523·522·521·520
. Thus the FVF

for this case is 2−29.
7) Pair has 11+ errors: As these many errors in the line

is negligible to begin with (2−27 or less), we simplify
the calculations of these case by simply using a lose
upper bound on FVF. For these cases, we need at

least five error bits to have overlapping positions.
Given that the line (with SECDED) has 523 bits, this
probability is ≪ 2−20, if bit failure probability is <
0.5. So, we will use FVF ≪ 2−20.

The total failure rate of FLAIR mechanism can be esti-
mated by multiplying FVF with the raw probability that the
event will happen. For example, if the probability that the pair
has 8 errors is X and the EVF is Y then the contribution to
overall vulnerability from 8 error case would be X ·Y . Table III
shows the effective vulnerability of FLAIR. The effective pair
failure rate with FLAIR is 2−26.3 which meets our target for
the pair failure probability 2−25.7. Thus, FLAIR will be able
to provide a Vmin of 485mv, similar to ECC-8.

Note that we have made two severely pessimistic assump-
tions in our analysis. First, miscorrection always results in
match with faulty bit of the other line. Second, soft error strike
happens exactly in the position of the most vulnerable bit in
the line. Given the inherent likelihood of these events is low
(<< 0.2%), the Vmin of FLAIR in practice can be expected
to be lower than 485mv.

E. Vmin Comparisons

Table IV compares different ECC schemes with VS-ECC.7

and FLAIR. The Vmin of VS-ECC is limited by ECC-4 for
quarter of the cache (as the protected cache has only one-
fourth the lines, the Vmin is slightly lower than ECC-4 for
baseline cache). FLAIR provides a Vmin similar to ECC-8.
An important aspect to consider in these Vmin calculations is
that we assumed that for all schemes, except FLAIR, there
is alternative mechanism to handle soft-errors, and all the
available ECC is used only for tolerating hard errors. Reserving
one of the available ECC units to only tolerate soft errors
would increase the Vmin of these schemes (significantly). The
analysis of FLAIR, on the other hand, already accounts for soft
error tolerance. Thus, FLAIR provides low Vmin as well as
soft error tolerance, while using only existing SECDED code.

While Table IV compares FLAIR to schemes that avoid
non-volatile fault map, we also evaluated FLAIR versus

7Table 3 of [2] shows VS-ECC obtains 500mv Vmin with cache line disable,
which incorrectly assumes that there are no errors in training phase.

schemes that rely on having non-volatile memory with faulty
locations stored. The most advanced (albeit complex) proposal
in this class is Archipelago [4]. We found that for failure rate
of Figure 2, and yield target of 99.9%, Archipelago tolerates a
bit failure rate similar to ECC-8.8 Thus, FLAIR obtains Vmin
similar to Archipelago without the need for non-volatile fault
map, while avoiding dual-line read on each cache access, and
obviating complex pairing of cache lines.

F. Operation During Post Testing Phase

FLAIR uses replication to provide robustness only during
the testing phase. As cache ways get tested, the testing
information gets stored in the line, and these ways become
available for normal use. Then, a pair of two ways that are
storing replicated information for one of the way are freed up
for testing. This procedure continues till the entire cache has
gone through the testing phase and finally there would be no
replicated ways in the cache. After the testing phase is over,
the cache operates similar to traditional cache with SECDED
and the lines with faults can simply be discarded. Read and
write operations in the post testing phase get satisfied by single
access at at the normal latency (without any latency overheads).

V. RECLAIMING DISCARDED LINES

Once the testing phase is over, the replication mode of
FLAIR is discontinued, the faulty lines identified during the
testing phase are disabled, and cache operates only with
reliable lines. Figure 10 shows the percentage of lines that have
exactly 1 error, or 2 or more errors as the operating voltage
is changed form 485mv to 540mv. At target Vmin of 485mv,
30.7% of the lines would have one bit of hard fault, and 9.3%
of lines will have two or more errors.

As our cache employs only SECDED we will need to
disable lines with 2+ errors. For lines with 1 error we can
use SECDED code to correct one bit error. However, the line
with single bit fault would then become vulnerable to soft
errors. For example, if such a line is struck by a soft error
then SECDED would be able to detect the error but not correct
it. Therefore, prior approaches [2] would recommend simply
disabling lines with even one bit fault. Unfortunately, that
would discard 40% of cache lines in normal mode at 485mv
operation.

Ideally we would like to have almost all of the cache
capacity during normal program operation. We observe that
lines with a single bit hard fault can still be used for reliably
storing clean lines. If a soft error happens in a weak line (line
with 1-bit hard error), then it becomes uncorrectable double
bit error and we can detect it with existing SECDED circuitry.
If such a lines is restricted to store clean data, we can simply
invalidate the line and read the data from memory. We call
this concept Weak Line Reclamation (WLR).

To enable WLR, we need information about whether the
faulty line has exactly one bit error or more than one bit error.
During the testing phase, the lines are identified as such. We
convey this information from testing phase to execution phase

8The original Archipelago study [4] claimed Vmin of 375mv. This is
because they use more optimistic pfail-to-Vmin curve than shown in Figure 2,
a yield target of 99%, and 2MB cache. For their assumptions, both ECC-8
and Archipelago are operational till a failure of about 1 in 700 cells (375mv).

485 490 495 500 505 510 515 520 525 530 535 540
Operating Voltage (mv)

0

20

40

60

80

100

P
er

ce
n

ta
g

e
o

f
L

in
es

Zero Error

One Error

2+ Errors

Fig. 10. Percentage of fault-free lines, lines with exactly one error, and lines
with 2 or more errors, as operating voltage is varied. At target Vmin of 485mv,
there are 9.3% lines with 2+ errors, 30.7% lines with exactly one error, and
60% of the lines have no errors.

in a storage efficient manner. Each line is augmented with a
Faulty Cache Line (FCL) bit. For all lines that have at least
one bit error FCL is set to 1. We note that if FCL=1, that line
cannot be used to store dirty data so we can reuse the DirtyBit
to convey information about the number of faults in the line. If,
FCL=1 and DirtyBit=1 then the line is deemed to have more
than 1 error, and is disabled. If FCL=1 and DirtyBit=0, then
the line has exactly one error and can be used to store only
clean lines. The disable status as conveyed by combination of
FCL and DirtyBit is captured in Table V.

TABLE V. IMPLEMENTING WEAK LINE RECLAMATION.

FCL Dirty Status

0 0 Fault-free line storing clean data
0 1 Fault-free line storing dirty data
1 0 Faulty Line with 1 hard-error, can store clean data
1 1 Faulty Line with 2+ errors, disabled

If a clean line with FCL=1 becomes dirty then a clean line
(with FCL=0) from that set is selected (using the replacement
policy of the cache) and swapped with the line that has become
dirty. If there are no clean lines in the set, then a victim line
(with FCL=0) is identified and the dirty data is written to that
location. With Weak Line Reclamation, we can have 90.7% of
the cache capacity available during normal program operation
(instead of 60% usable cache capacity).

VI. EVALUATIONS AND ANALYSIS

A. Experimental Methodology

For our performance studies, we use CMP$im [8], a trace-
driven x86 simulator. As a baseline, we model a quad-core out-
of-order processor, which is similar to the Intel Core i7 proces-
sor. We simulate 32 KB 8-way associative L1 instruction and
data caches with 3-cycle latency, 256 KB 8-way associative
L2 cache with 8-cycle latency and 8 MB, 16-way associative
L3 cache with 20-cycle latency. All caches use a linesize of
64-bytes. We assume L3 is protected with SECDED.

To analyze FLAIR, we extend CMP$im to simulate the
following effects: (i) disable cache lines with multi-bit fail-
ures, (ii) restrict the use of cache lines with 1-bit failure to
clean data. Furthermore, to quantify the performance overhead
of reduced cache capacity of FLAIR; we also simulate an
ideal, defect-free, low-voltage baseline that has reliable caches
without any loss in capacity. We use a slice of 500 million

0.80

0.82

0.84

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
IP

C
 (

N
o
rm

.
to

 N
o
 D

ef
ec

ts
) FLAIR-WLR FLAIR-no-WLR

G
em

sF
D

TD

as
ta

r

bw
av

es

bz
ip

2

ca
ct

us
A

D
M

ca
lc

ul
ix

de
al

II

ga
m

es
s

gc
c

go
bm

k

gr
om

ac
s

h2
64

re
f

hm
m

er

lb
m

le
sli

e3
d

lib
qu

an
tu

m

m
cf

m

ilc

na
m

d

om
ne

tp
p

pe
rlb

en
ch

po
vr

ay

sje
ng

so
pl

ex

sp
hi

nx

to
nt

o

w
rf

xa
la

nc
bm

k

ze
us

m
p

ol
tp

sa

p

sp
ec

jb
b

G
eo

M
ea

n

Fig. 11. IPC of FLAIR (with and without Weak Line Reclamation) normalized to an ideal defect-free baseline.

TABLE VI. POWER AND ENERGY COMPARISON.

Design Vmin (mV) Clock Frequency (MHz) Normalized Power Normalized EPI

No-ECC 848 2000 1.00 1.00
ECC-1 684 1380 0.47 0.69

VS-ECC 538 820 0.20 0.50
ECC-8* 487 580 0.14 0.47
FLAIR 485 575 0.14 0.47

instructions for each SPEC2006 benchmark, obtained after
fast-forwarding first 500 million instructions. We run these
benchmarks in a rate-mode on the quad-core processor. We
also use three commercial benchmarks (oltp, sap, specjbb).
We show performance results only for the normal execution
phase and not for the testing phase. We report performance in
terms of number of committed instructions per cycle (IPC).

B. Performance in Normal Mode

Figure 11 shows the performance of FLAIR (with and
without WLR) for all the benchmarks, normalized to defect-
free baseline. The bar labeled GeoMean show the geometric
mean of normalized IPC across all workloads. We only show
the performance impact of L3 design changes while keeping
the L1 and L2 caches uniform across all the configurations.

In comparison with the defect-free baseline, FLAIR-WLR
shows a negligible drop in performance for majority of the
benchmarks, with the maximum performance loss limited
to 4%. Averaging across all the benchmarks, FLAIR-WLR
degrades performance by only 1.5% . The performance loss
is negligible because FLAIR-WLR disables only 9% of the
cache lines, while restricting 30% of the cache lines to storing
clean data. Comparing FLAIR-WLR with FLAIR-no-WLR,
we note that FLAIR-WLR provides substantial performance
improvements over FLAIR-no-WLR. Weak Line Reclamation
improves the performance by 3% on average and brings
down the maximum performance degradation caused by our
technique during post-testing mode from 14% to 4%, for mcf.
For commercial benchmarks, the effectiveness is even more
pronounced compared to SPEC benchmarks. WLR improves
performance of oltp by 4%, sap by 11%, and specjbb by 8%.

C. Power and Energy Efficiency

Table VI summarizes the achievable Vmin, frequency,
power consumption and energy per instruction (EPI) of dif-
ferent configurations during the low voltage mode. In addition
to the baseline configuration and FLAIR, we also show results
for ECC-1 and VS-ECC. We normalize the power and energy
results for different designs to that of the baseline, while
showing absolute results for Vmin and frequency. For fre-
quency calculations, we perform circuit simulations to predict
the frequency at different voltages. For our power evaluations,
we use an industry grade power tool. The power numbers are
based on data from a commercial processor on 32nm node.

FLAIR achieves the lowest power and EPI amongst all the
configurations. FLAIR reduces power by 86%, 71%, and 30%,
compared with baseline, ECC-1, and VS-ECC, respectively,
while reducing EPI by 53%, 33%, and 6% compared with
baseline, ECC-1, and VS-ECC, respectively. FLAIR achieves
better energy efficiency compared to VS-ECC, while obviating
the need for complex multi-bit ECC encoding and decoding
logic and the storage overhead of ECC-4 for one fourth of the
cache.

For power and energy comparisons with ECC-8, we pes-
simistically assume that circuitry for encoding and decoding
ECC-8 incurs zero power and latency. Nonetheless, even with
such a pessimistic assumption ,FLAIR has comparable power
and EPI as ECC-8, while avoiding the overheads of ECC-8.

D. Hardware Overhead of FLAIR

Implementing FLAIR requires only minor changes to the
cache controller. The ternary output of (G,C,D) status of a
line is already available from SECDED. We simply need to
implement one line-comparator circuit for DMR, which incurs
negligible logic. The storage overhead of FLAIR is one bit

per cache line (to indicate faulty cache line). Thus, FLAIR
not only avoids the storage overhead of multi-bit ECC but
also the complex circuitry required for ECC decoding.

VII. SUMMARY

While several recent proposals have tried to tolerate multi-
bit errors in cache lines to enable low-voltage operation, they
typically require significant storage overhead and hardware
complexity. Our aim is to enable low power operation without
requiring significant design changes to cache structure and
avoiding the hardware overhead. We rely on runtime testing
to identify faulty lines. We propose FLAIR, a highly effective
dynamic replication scheme to provide robustness during test-
ing phase, and Weak Line Reclamation to enable reliable use
of lines with 1-bit hard error during the post-testing phase.

In this paper, we set out six requirements for reliable
low voltage cache operation and developed a practical, low
overhead solution, which meets all these requirements:

1) Our solution enables the cache to operate at a voltage
of 485 mV, almost 50mv below the minimum voltage
achieved by the previous state-of-the art solution.

2) Our solution incurs negligible logic overhead and the
storage overhead of only a single (faulty cache line
bit per cache line; substantially lower than previous
solutions.

3) Our solution tolerates soft errors in both testing and
post-testing phases, without relying on additional
storage overhead except for the existing SECDED-
code.

4) Our solution provides 91% of the cache capacity
during normal program execution, resulting in only
1.3% average performance loss compared to a defect-
free baseline.

5) Our solution retains a cache read latency similar to
that of a baseline cache with SECDED ECC during
normal program execution (post-testing phase).

6) Our solution obviates the need for a non-volatile
memory based fault map, and does not rely on
software changes for deployment.

Unlike previous low-voltage cache proposals that largely
ignored soft-error resilience, FLAIR protects the cache from
both hard errors as well as soft errors. FLAIR is a simple and
effective solution which enables the use of same chip design
in different domains with negligible hardware changes. We
believe such practical and effective solutions will be driver for
flexible low-power operation modes in future processors.

In this paper, we analyzed FLAIR on a cache that imple-
ments SECDED. However, the general idea of FLAIR can also
be applied to other cache designs that do not have ECC (No-
ECC) or have built-in multi-bit ECC codes [10] .

ACKNOWLEDGMENTS

Thanks to Wei Wu for discussions on Multi-bit Error
Correction Code. Moinuddin Qureshi is supported by NetApp
Faculty Fellowship and Intel Early Career Award.

REFERENCES

[1] J. Abella et al. Low vccmin fault-tolerant cache with highly predictable
performance. In MICRO-2010.

[2] A. Alameldeen et al. Energy-efficient cache design using variable-
strength error correcting codes. In ISCA-2011.

[3] A. Ansari et al. Zerehcache: Armoring cache architectures in high defect
density technologies. In MICRO-2009.

[4] A. Ansari, S. Feng, S. Gupta, and S. Mahlke. Archipelago: A
polymorphic cache design for enabling robust near-threshold operation.
In HPCA-2011, feb. 2011.

[5] D. Bossen, J. Tendler, and K. Reick. Power4 system design for high
reliability. In IEEE Micro, vol. 22, No. 2, pp. 16-24, Mar. 2002.

[6] Z. Chisti et al. Improving cache lifetime reliability at ultra-low voltages.
In MICRO-2009.

[7] A. Garg and P. Dubey. Fuse area reduction based on quantitative yield
analysis and effective chip cost. In Defect and Fault Tolerance in VLSI

Systems, 2006. DFT ’06. 21st IEEE International Symposium on, oct.
2006.

[8] A. Jaleel et al. Cmpsim: A pin-based on-the-fly multi-core cache
simulator. In Fourth Annual Workshop on Modeling, Benchmarking

and Simulation (MoBS), 2008.

[9] J. Kulkarni, K. Kim, and K. Roy. A 160 mv robust schmitt trigger
based subthreshold sram. In IEEE Journal of Solid-State Circuits, vol.

42, no. 10, pp. 2303-2313, Oct. 2007.

[10] M. Manoochehri, M. Annavaram, and M. Dubois. Cppc: correctable
parity protected cache. In ISCA-38, 2011.

[11] D. Roberts, N. Kim, and T. Mudge. On-chip cache device scaling limits
and effective fault repair techniques in future nanoscale technology. In
Digital System Design Architectures, Methods and Tools, pp. 570-578,

Aug. 2007.

[12] H. M. S. Rusu and B. Cherkauer. Itanium 2 processor 6m: Higher
frequency and larger l3 cache. In IEEE Micro, vol. 24, No. 2, pp.

10-18, Mar. 2004.

[13] C. Wilkerson et al. Reducing cache power with low cost, multi-bit
error-correcting codes. In ISCA-2010.

[14] C. Wilkerson et al. Trading off cache capacity for reliability to enable
low voltage operation. In ISCA-2008.

APPENDIX A: MEMORY BANDWIDTH CONSUMPTION IN

TESTING MODE FOR VS-ECC AND FLAIR

We compare our proposal (FLAIR) with the state-of-the-
art VS-ECC design in terms of their memory bandwidth
consumption during the testing mode. VS-ECC disables 12
cache ways out of 16 ways, resulting in an effective capacity
of 25%. In case of FLAIR, the effective cache capacity
is higher than 25%, because only 2 out of the 16 ways
undergo testing, while the 14 ways are used (with DMR) to
provide an operational cache. Table VII compares the average
memory bandwidth consumption for VS-ECC and FLAIR.
FLAIR reduces read traffic as compared to VS-ECC, by an
average of 6%. This reduction is due to larger effective cache
capacity. However, the write-through design of FLAIR during
the testing mode increases the write traffic to memory. The
overall memory traffic consumed by the two approaches differs
by only 2% on average. During the testing phase, the overall
system performance of VS-ECC and FLAIR are comparable,
as FLAIR has fewer read misses compared to VS-ECC.

TABLE VII. BANDWIDTH CONSUMPTION BREAKDOWN IN TESTING

(BW NUMBERS NORMALIZED TO VS-ECC).

VS-ECC FLAIR

Read BW 75.7% 70.7%
Write BW 24.3% 31.0%

Total BW 100.0% 101.7%

