Fundamental Latency Trade-offs in Architecting DRAM Caches*

Outperforming Impractical SRAM-Tags with a Simple and Practical Design

Moinuddin K. Qureshi Gabriel H. Loh
Dept. of Electrical and Computer Engineering AMD Research
Georgia Institute of Technology Advanced Micro Devices, In
nmoi n@at ech. edu gabe. | oh@nd. com
Abstract of DRAM cache (one access each for tag and data). A recent

work from Loh and Hill [LO, 11] makes the tags-in-DRAM ap-

This paper analyzes the design trade-offs in architectin - : .
large-scale DRAM caches. Prior research, including the r g_lproach efficient by co-locating the tags and data in the same

cent work from Loh and Hill, have organized DRAM caches > However, S|m|la_r to prior work on DRAM caches, the
. ; : recent work also architects DRAM caches in largely the same
similar to conventional caches. In this paper, we conterad th

. ; . : way as traditional SRAM caches. For example by having a se-
some of the basic design decisions typically made for con:_? . d ?
) o rialized tag-and-data access and employing typical op&imi
ventional caches (such as serialization of tag and data ac- . S . :
A tions such as high associativity and intelligent replaagme
cess, large associativity, and update of replacement)stage
detrimental to the performance of DRAM caches, as they ex- We observe that the effectiveness of cache optimizations
acerbate the already high hit latency. We show that higheldepends on technology constraints and parameters. What
performance can be obtained by optimizing the DRAM cachénay be regarded as indispensable in one set of constraints,
architecture first for latency, and then for hit rate. may be rendered ineffective when the parameters and con-
We propose a latency-optimized cache architecture, calle@traints change. Given that the latency and size parameters
Alloy Cache that eliminates the delay due to tag serializa-of a DRAM cache are so widely different from traditional
tion by streaming tag and data together in a single burst. Wecaches, and the technology constraints are disparate, st mu
also propose a simple and highly effectiMemory Access be careful about the implicit optimizations that get inaprp
Predictorthat incurs a storage overhead of 96 bytes per corerated in the architecture of the DRAM cache. In particular,
and a latency of 1 cycle. It helps service cache misses fastave point out that DRAM caches are much slower than tra-
without the need to wait for a cache miss detection in the conditional caches, so optimizations that exacerbate thadyre
mon case. Our evaluations show that our latency-optimizednigh hit latency may degrade overall performance even if the
cache design significantly outperforms both the recent proprovide a marginal improvement in hit rate. While this may
posal from Loh and Hill, as well as an impractical SRAM seem to be a fairly simple and straight-forward concept, it
Tag-Store design that incurs an unacceptable overhead dias a deep impact (and often counter-intuitive implicatjon
several tens of megabytes. On average, the proposal fro@n the design of DRAM cache architectures. We explain the
Loh and Hill provides 8.7% performance improvement, theneed for reexamining conventional cache optimizations for
“idealized” SRAM Tag design provides 24%, and our simpleDRAM caches with a simple example.

latency-optimized design provides 35%. Consider a system with a cache and a memory. Memory

accesses incur a latency of 1 unit, and cache accesses iticur O

1. Introduction unit. Increasing the cache hit rate from 0% to 100% reduces
) _the average latency linearly from 1 to 0.1, shown as “Base
Emerging 3D-stacked memory technology has the potentighache in Figurei(a). Assuming the base cache has a hit rate

to provide a step function in memory performance. It cangt 5094, then the average memory access time for the base
provide caches of hundreds of megabytes (or a few gigabyteghche is 0.55. Now consider an optimizatithat eliminates

at almost an order of magnitude higher bandwidth comparedqo; of the misses (hit rate with: 70%) but increases hit
to traditional DRAM; as such, it has been a very active relatency to 1.4x (hit latency with: 0.14 unit). We want to
search area’} 4, 7, 12, 13, 19]. However, to get performance mnlementa only if it reduces average latency. We may begin
benefit from such large caches, one must first handle severgi, examining the target hit-rate f& given the higher hit-
key challenges, such as architecting the tag store, 0pligiz |atency, such that the average latency is equal to the base ca
hit latency, and handling misses efficiently. The proh¥eiti \hich we call theBreak-Even Hit Rate (BEHRY the hit-rate
overhead of storing tags in SRAM can be avoided by placingith A is higher than the BEHR, thef will reduce average
the tags in DRAM, but naively doing so doubles the |atencylatency. For our example, the BEHR féris 52%. So, we

*The work on Memory Access Prediction (Section 5) was don@pp2 ~d€emA to be a highly effective optimization, and indeed it
while the first author was a research scientist at IBM Rebeiard. reduces average latency from 0.55 to 0.40.

10] Base Cache Opt-A
> >
2 0.8 2
I k]
S S
() 0.6 ()
(o)) (o))
o o
> >
< <

0.2+

T T T T i T T T
0 10 20 30 40 50 60 70 80

Cache Hit Rate (H%)

Break—Even HitRate=83%

~~.
~~o

0.8

0.6

HitRate with A=70%

0.4+

T l T l T l T
0 10 20 30 40 50 60 70

Cache Hit Rate (H%)

l l T
80 90 100

‘ (a) Fast Cache [Hit Latency 0.1] ‘

Figure 1: Effectiveness of cache optimizations depend on ca
from 50% to 70%. (a) For a fast cache, A is highly effective at r
increases average latency from 0.75 to 0.79.

Now, consider the same “highly effective” optimizatién

che hit latency. Option A increases hit latency by 1.4x and
educing average latency from 0.55 to 0.4 (b) For a slow cache,

‘ (b) Slow Cache [Hit Latency 0.5] ‘

hit-rate
A

1. We analyze the latency of three designs: SRAM-Tags,

but now the cache has a latency of 0.5 units, much like the the proposal from Loh and Hill, and an ideal latency-

relative latency of a DRAM cache. The revised hit latency
with A will now be 1.4x0.5=0.7 units. Consider again that

optimized DRAM cache. We find that the Loh-Hill pro-
posal suffers from significant latency overheads due to

our base cache has a hit-rate of 50%. Then the average la- tag serialization and due to the MissMap predictor. For
tency for the base cache would be 0.75 units, as shown in SRAM-Tags, tag serialization latency limits performance.

Figure1(b). To achieve this average latenéymust have a
hit rate of 83%. Thus optimizatioA, which was regarded as

Both designs leave significant room for performance im-
provement compared to the latency-optimized design.

highly effective in the prior case, ends up increasing ay@ra 2. We show thatle-optimizingthe DRAM cache from a
latency (from 0.75t0 0.79). The Break Even Hit Rate depends highly-associative structure to direct-mapped improves

also on the hit rate of the base cache. If the base cache had
hit rate of 60%, the®\ would need a 100% hit-rate simply to
break even! Thus, seemingly indispensable and traditipnal
effective cache optimizations may be rendered ineffedfive
they have a significant impact on cache hit latency for DRAM
caches. Note that typical cache optimizations, such ashigh

associativity and better replacement, do not usually pi@vi 4
a miss reduction as high as 40%, which we have considered

for A. However, our detailed analysis (Section 2) shows that
to support these optimizations, previously analyzed DRAM

cache architectures do incur a hit latency overhead of more

than 1.4x as considered fér

It is our contention that DRAM caches should be designedt.

from the ground-up keeping hit latency as a first priority for
optimization. Design choices that increase hit latency by
more than a negligible amount must be carefully analyzed
to see if it indeed provides an overall improvement. We find
that previously proposed designs for DRAM caches that try
to maximize hit-rate are not well suited for optimizing over

aperformance by reducing the hit latency, even if it de-
grades cache hit rate. For example, simply configuring
the design of Loh and Hill from 29-way to direct-mapped
enhances performance improvement from 8.7% to 15%.
However, this design still suffers from tag serializatiared
to separate accesses to the “tag-store” and “data-store.”

We propose thélloy Cache a highly-effective latency-
optimized cache architecture. Rather than splitting cache
space into “tag store” and “data store,” it tightly integrsat

or alloys the tag and data into one unit (Tag and Data,
TAD). Alloy Cache streams out a TAD unit on each cache
access, thus avoiding the tag serialization penalty.

We present a simple and effectidemory Access Pre-
dictor [15] to avoid the cache access penalty in the path
of servicing cache miss. Unlike MissMap, which incurs
multi-megabyte storage and L3 access delay, our proposal
requires a storage overhead of 96 bytes per core and incurs
alatency of 1 cycle. Our predictor provides a performance
improvement within 2% of a perfect predictor.

all performance. For example, they continue to serialige th Qur evaluations with a 256MB DRAM cache show that,
tag and data access (similar to traditional caches), wiich i on average, our latency-optimized design (35%) signiflgant
creases hit latency significantly. They provide high assoei outperforms both the proposal from Loh and Hill (8.7%) as
ity (several tens of ways) at the expense of hit latency. \We cawell as the impractical SRAM-Tag design (24%). Thus, our
significantly improve the performance of DRAM caches bysimple design with less than 1KB overhead (due to predictor)
optimizing them for latency first, and then for hit rate. With provides 1.5x the performance benefits of the SRAM design
this insight, this paper makes following contributions: that requires several tens of megabytes of overhead.

SRAM TAG-STORE (a) DRAM Cache with SRAM Tag-Store (Impractical)

DRAM ARRAY
ADDR \ 32 x 64 byte cache lines = 2048 bytes (size of row buffer)
(I T T T T T T I I I T I I
~
\DATAOUT
(b) DRAM Cache Organization as Proposed by Loh—Hill
Tag—Store 29 ways of data
MISS
ROW BUFFER WMAP_@VT‘T““““‘}{“““““““““‘
T patAouT

(c) IDEAL Latency—Optimized DRAM Cache

ADDR

22NN DN NPNDN DN PN PN NANDN PN PN NN NN DN DS ON DI NS SANPN PN 2N N SAIND. ‘

T~ DATAOUT

Figure 2: DRAM Cache organization and flow for a typical acces s for (a) SRAM Tag-store, (b) the organization proposed by Lo h
and Hill, and (c) an IDEAL latency-optimized cache.

2. Background and Motivation 2.2. Tags-in-DRAM: The LH-Cache

While stacked memory can enable giga-scale DRAM cachegye cap place the tags in DRAM to avoid the SRAM overhead.
several challenges must be overcome before such caches GaBwever naively doing so would require that each DRAM
be deployed. An effective design of DRAM cache must ;e access incurs a latency of two accesses, one for tag and
balance (at-least) four goals. First, it should minimize th yno other for data, further exacerbating the already high hi
non-DRAM s_torage required for gache management (us'r!%tency. A recent work from Loh and Hilll]) 11] reduces
a small fraction of DRAM space is acceptable). Second, ithe 4ccess penalty of DRAM tags by co-locating the tags and
should minimize hit latency. Third, it should minimize miss data for the entire set in the same row, as shown in Fig(ioe
latency, so that misses can be sent to memory quickly. Fourthy reseryes three lines in a row for tag store, and makes the
it should provide a good hit-rate. These requirements are Ofqr o9 jines available as data lines, thus providing a 89-w
ten conflicting with each other, and a good design must bak,che A cache access must first obtain the tags, and then the
ance these appropriately to maximize performance. _ data line. The authors propo€®mpound Access Scheduling
Itis desirable to organize DRAM caches at the granularitysg that the second access (for data) is guaranteed to get a row
of a cache line in order to efficiently use cache capacitytand pyffer hit. However, the second access still incurs approxi

minimize the consumption of main memory bandwidih]l mately half the latency of the first, so this design still ircu
One of the main challenges in architecting a DRAM cache at;jgnjficant TSL overhead.

aline granularity is the de_5|gn of the tag §t0re. A per-la t Given that the tag check incurs a full DRAM access, the la-
overhead of 5-6 bytes quickly translates into a total tagest - T S
tency for servicing a cache miss is increased significamdy.

overhead of a few tens of megabytes for a cache size in thseervice cache misses quicKly, the authors propadisaMap

reglme.of a few hundred megabytgsl. We discuss the Optlonsstructure that keeps track of the lines in the DRAM cache.
to architect the tag store, and how it impacts cache latency. S : .
If a miss is detected in the MissMap, then the access can

2.1. SRAM-Tag Design go directly to memory without the need to wait for a tag
check. Unfortunately, the MissMap structure requires mult
This approach stores tags in a separate SRAM structure, asegabyte storage overhead. To implement this efficiethity, t
shown in Figure2(a). For the cache sizes we consider, this deauthors propose to embed the MissMap in the L3 cache. The
sign incurs an unacceptably high overhead (24MB for 256 MBMissMap is queried on each L3 miss, which means that the
DRAM cache). We can configure the DRAM cache as aextra latency of the MissMap, which we c<edictor Seri-
32-way cache and store the entire set in one row of thalization Latency (PSL.js added to the latency of both cache
cache P, 10]. To obtain data, the access must first go throughhit and cache miss. Thus, the hit latency suffers from both
the tag-store. We call the latency due to serialization gf ta TSL and PSL. Throughout this paper, we will assume that the
access aTag Serialization Latency” (TSL)TSL directlyim- design from Loh and Hill (] is always implemented with
pacts the cache hit latency, and hence must be minimized. the MissMap, and we will refer to it simply as thél-Cache

(a) BASELINE MEMORY (NO DRAM CACHE)

Hitoy [IWAGSSTORER4N[[(64]
MISS X DN DO (15!
MISS Y Ll DRI I I I I I I Nt 1 1 2)
(b) DRAM-CACHE WITH SRAM TAG-STORE (IMPRACTICAL)
TAG-CHECK

wo wssweps [oA AT [CAS GAT R o

wiss X I 00000000 0000000 0000000000000 IOREINRINRNNNE c)

(c) DRAM CACHE AS PROPOSED BY LOH-HILL

ix - [(27 acr | cas | aus

wey [i (40) MEMORY | ... i1a6] | HISRIse] | JLc
cache | [J08) | el |EEE4I

wss x SORIUORIUORIUORIUORIUORIPORIIIRDRIRORRONNE (-2

ETO—— I

(d) IDEAL LATENCY-OPTIMIZED DRAM CACHE

Figure 3: Latency breakdown for two classes of isolated acce sses X and Y. X has good row buffer locality and Y needs to activ ate
the memory row to get serviced. The latency incurred in an act ivity is marked as [N] processor cycles.

2.3. IDEAL Latency-Optimized Design 2.4. Raw Latency Breakdown

Both SRAM-Tags and LH-Cache have hit latency due to TSLIn this section, we quantitatively analyze the latencyctiie-
To reduce conflict misses, both designs are configured sinmess of different designs. While there are several altemat
ilar to conventional set-associative caches. They plaee thimplementations of both SRAM-Tags and LH-Cache, we will
entire set in a row for conflict miss reduction, sacrificing restrict the analysis in this section to the exact implement
the row-buffer hits for cache accesses (sequentiallyesdéid tion of SRAM-Tags and LH-Cache as previously described,
lines map to different sets, and the probability of temgdgral including identical latency numbers for all parameters],|
close accesses going to same sekis1%). Furthermore, which are summarized in Tab% We report latency in terms
for LH-Cache, supporting high associativity incurs higtger of processor cycles. Off-chip memory memory has tACT and
tency due to streaming a large number of tag lines, and th&CAS of 36 cycles each, and needs 16 cycles to transfer one
bandwidth consumed due to replacement update and victitine on the bus. Stacked DRAM has tACT and tCAS of 18
selection further worsens the already high hit latency. cycles each, and needs 4 cycles to transfer one line on the
We argue that DRAM caches must be architected to minibus. The latency for accessing the L3 cache as well as the
mize hit latency. This can be done by a suitable cache struSRAM-Tag store is assumed to be 24 cycles.
ture that avoids extraneous latency overheads and supportsTo keep the analysis tractable, we will initially consider
row buffer locality. Ideally, such a structure would haveaee only isolated accesses of two types, X and Y. Type X has a
TSL and PSL, and would stream out exactly one cache line afigh row buffer hit-rate for off-chip memory and is serviced
ter a latency equal to the raw latency of the DRAM structureby memory with a latency equal to a row buffer hit. Type Y
(ACT+CAS for accesses that open the row, and only CAS foneeds to open the row in order to get serviced. The baseline
row-buffer hits). Also, it would know a priori if the access memory system would service X in 52 cycles (36 for CAS,
would hit in cache or go to memory. We call such a design asnd 16 for Bus), and Y in 88 cycles (36 for ACT, 36 for CAS,
IDEAL-LO (Latency Optimized)As shown in Figur&(c), it and 16 for Bus). Figur& shows the latency incurred by dif-
does not incur any latency overheads. ferent designs to service X and Y.

As both SRAM-Tags and LH-Cache map the entire set t®2.6. Performance Potential

a single DRAM row, they get poor row buffer hit-rates in the _. L
DRAM cache. Therefore for both X and Y, neither CacheF|gure4 compares the performance of three designs: SRAM-

design will give a row buffer hit. Therefore, a hit for both X Tag, LH-Cache, and IDEAL-LO. The numbers are speedups

and Y will incur a latency of ACT. However, with IDEAL-LO with respect to a baseline that does not have a DRAM cache,
X gets a row buffer hit and Y will need a Ia{tency of ACT. " and are reported for a DRAM cache of size 256MB (method-

The SRAM-Tag suffers a Tag Serialization Latency of 24OIOgy in Sectiors).
cycles for both cache hits and misses. A cache hit needs an; g
other 40 cycles (18 ACT + 18 CAS + 4 burst), for atotal of 64 14 __=LH-Cache
cycles. Thus SRAM-Tag increases latency for hits on X, d& 1.4 = SRAM-Tag
creases latency for hits on Y, and increases latency forersslis% 1.2 =IDEAL-LO
on both X and Y due to the inherent latency of tag-lookup. & 1.0

LH-Cache first probes the MissMap, which incurs a latency os
of 24 cycles. For a hit, LH-Cache then issues a read for o6
tag information (ACT+CAS, 36 cycles), then it streams out
the three tag lines (12 cycles), followed by one DRAM cycle
for tag check. This is followed by access to the data line Figure 4: Performance potential of IDEAL-LO design.
(CAS+burst). Thus a hit in LH-Cache incurs a latency of 96
cycles, almost doubling the latency for X on hit, degradimg t Validation with Prior Work: On average, SRAM-Tags pro-
latency for Y on hit, and adding MissMap latency to miss. vide a performance improvement of 24% and LH-Cache

An IDEAL-LO organization would service X with a row 8.7%. Thus, LH-Cache obtains only one-third of the perfor-
buffer hit, reducing the latency to 22 cycles. A hitfor Y wdul mance benefit of SRAM-Tags which is inconsistent with the
incur 40 cycles. IDEAL-LO does not increase miss latency. original LH-Cache study (], which reported that the LH-

To summarize, we assumed that the raw latency of th&€ache obtains performance very close to SRAM-Tag. Given
stacked DRAM cache is half that of the off-chip memory.the difference in raw hit latencies between the two designs
However, due to the inherent serialization latencies, LH{see Figure3) and 4x bandwidth consumption of LH-Cache
Cache (and in most cases SRAM-Tag) has a higher raw l@ompared to SRAM-Tags, it is highly unlikely that LH-Cache
tency than off-chip memory. Whereas, IDEAL-LO continueswould perform close to SRAM-Tags. A significant part of
to provide a reduction in hit latency on cache hits. this research study was to resolve this inconsistency with
.) previously reported results. The authors of the LH-Cache
2.5. Bandwidth Benefits of DRAM Cache study [L0] have subsequently published an errath that
Even with a higher raw hit latency than main memory, bothShows r_evi§ed evaluations aftercc_)rrecting def?cienciduaiin
LH-Cache and SRAM-Tag can still improve performance byevaluatlon mfrastructurg. The revised evaluations f@N\2B
providing two indirect benefits. First, stacked DRAM has Show on average:10% improvement for LH-Cache and
~8x more bandwidth than off-chip DRAM, which means 25% for SRAM-Tag, consistent with our evaluations.
cache requests wait less. Second, contention for off-chip Note that IDEAL-LO outperforms both SRAM-Tags and
memory is reduced as DRAM cache hits are filtered. The-H-Cache, and provides an average of 38%. For libquan-
performance benefit of LH-Cache and SRAM-Tags comedum, the memory access patterns has very high row-buffer
largely from these two indirect benefits and not due to rawhit rates in the off-chip DRAM resulting in mostly type X re-
latency. The first benefit relies on having a cache that haguests. Therefore, both SRAM-Tag and LH-Cache show per-
high-bandwidth. Although stacked DRAM has 8x raw band_form.ance d(_agradatlons d.ue to their inabilities to explod t
width compared to off-chip, LH-Cache uses more than 4x lineSPatial locality of sequential access streams.
transfers on each cache access 3 for tag, 1 for data, and some De-Optimizing for Performance
for update), so the effective bandwidth becorse2x. Both
SRAM-Tag and IDEAL-LO maintains 8x bandwidth by ef- We now present simplele-optimizationghat improve the
ficiently using the bandwidth. Therefore, they are more efoverall performance of LH-Cache, at the expense of hit-rate
fective than LH-Cache at reducing waiting time for cache reThe first is using a replacement scheme that does not re-
quests. We found that the latency for servicing requesta fro quire update (random replacement, instead of LRU-based
off-chip memory is similar for all three designs. DIP): This avoids LRU-update and victim selection over-
heads, which improves hit latency due to the reduced bank

The MissMap serialization latency can be avoided by protting contention. The second converts LH-Cache from 29-way to
MissMap in parallel with L3 access. However, this would deuthe L3~ qiract mapped. This has two advantages: direct, in that we
accesses, as MissMap would be probed on L3 hits as well,ngabank/port .
contention and increasing L3 latency and power consumptiemce, prior ~ dO NOt need to stream out three tag lines on each access, and
work [10] used serial access for MissMap, and so did we. indirect, employing open page mode for lower latency. For

SRAM-Tag and LH-cache, sequentially addressed cachelines
are mapped to different sets, and because each set is mapped
to a unique row, the probability of a row-buffer hit is very Processors
low. With a direct-mapped organization, several conseeuti Number of cores 8

Table 2: Baseline Configuration

sets map to the same physical DRAM row, and so accesses \l;\;%?#ency ‘I"IZPGCHZ
with spatial locality result in row buffer hits. The row-tef
hi for the di d fi . d Last Level Cache
it rat(Oe or the direct-mapped configuration was r‘r;easure to [3 (shared) 8MB, 16-way 24 cycles
be _56A> on average, compar_ed to less than 0.1% when the Off-Chip DRAM
entire set (29-way or 32-way) is mapped to the same row. Bus frequency 800 MHz (DDR 1.6 GHz)
N Channels 2
Table 1: | t of De-Opt LH-Cache.
aple L Impact ot e-bptimizing ache Ranks 1 Rank per channel
Configuration Speedup| Hit-Rate | Hit Latency Banks 8 Banks per rank
(cycles) Row buffer size 2048 bytes
LH-Cache 3.7% 55.20% 107 Bus width 64 bits per channel
LH-Cache + Rand Rep|l 10.2% 51.5% 98 tCAS-tRCD-tRP-tRAS| 9-9-9-36
LH-Cache (1-way) 15.2% 49.0% 82 Stacked DRAM
SRAM-Tag (32-way) 23.8% 56.8% 67 Bus frequency 1.6GHz (DDR 3.2GHz)
SRAM-Tag (1-way) 24.3% 51.5% 59 Channels 4
Bus width 128 hits per channel

Tablel shows the speedup, hit-rate, and average hit latency

for various flavors of LH-Cache. We also compare them with3 2> Workloads
SRAM-Tag and IDEAL-LO. LH-Cache has hit latency of 107 ="
cycles, almost 3x compared to IDEAL-LO. De-optimizing we use a single SimPoint {] slice of 1 billion instructions
LH-Cache reduces the latency to 98 cycles (random replacgsr each benchmark from the SPEC2006 suite. We perform
ment) and 82 cycles (direct mapped). These optimizationgyajuations by executing 8 copies of each benchmark in rate
reduce hit-rate and increase misses significantly (a remuct mode. Given that our study is about large caches, we perform
in_hit-rate from 55% to 49% represents almost 15% moreyetailed studies only for the 10 workloads that have a sgeedu

misses). However, this still improves performance signifiof more than 2 with a perfect L3 cache (100% hit-rate). Other
cantly. For SRAM-Tag, converting from 32-way to 1-way workloads are analyzed in Sectiér.

had little benefit& 0.5%), as the reduction in hit latency is
offset by reduction in hit-rate.
While a direct-mapped implementation of LH-cache is

Table 3 shows the workloads sorted based on perfect L3
speedup, the Misses Per 1000 Instructions (MPKI), and foot-
) elid T print (the number of unique lines multiplied by linesize)eW
more effective than the set-associative implementattatili -, J4e| a virtual-to-physical mapping to ensure two bench-
suffers from Tag Serialization Latency, as well as the Preq,4ks do not map to the same physical address. We use a suf-
dictor Serialization Latency, resulting in a significantpe iy yith the name of the benchmark to indicate rate mode.
formance gap between LH-Cache and_ “.DEA.L_LO (15.% VS- Wwe perform timing simulation until all benchmarks in the
38%). Our proposal removes these serialization latenciés a workload finish execution and measure the execution time of

obta|qs performance close to lDEAL'L_O'_ We descnb_e OUTthe workload as the average execution time across all 8.cores
experimental methodology before describing our solution.

3. Experimental MethOdOIOQy Table 3: Benchmark Characteristics.
3.1. Configuration Workload Perfect-L3 | MPKI | Footprint
Name Speedup

We use a Pin-based x86 simulator with a detailed memory meh T 20% =20 | 104GB
model. Table2 shows the configuration used in our study. bm 1 38x 318 33GB
The parameters for the L3 cache and DRAM (off-chip and sopl_ex r 3.5x 27.0 19GB
stacked) are identical to the original LH-Cache studly] [in- mic T 3 5x 25 7 41GB
cluding a 24-cycle latency for the SRAM-Tag. For LH-Cache, omnetpp_r 3.1x 209 | 259 MB
we model an idealized unlimited-size Miss Map that resides gce_r 2.8x 16.5 458 MB
in the L3 cache but does not consume any L3 cache capac- bwaves_r 2.8x 18.7 1.5GB
ity. For both LH-Cache and SRAM-Tag we use LRU-based sphinx_r 2.4x 12.3 80 MB
DIP [1€] replacement. We will perform detailed studies for a gems_r 2.2Xx 9.7 3.6 GB
256MB DRAM cache. In Sectiof.1, we will analyze cache libquantum_r 2.1x 254 | 262 MB

sizes ranging from 64MB to 1GB.

DRAM ARRAY TAG-AND-DATA (TAD) Alloy Cache

TAG
(BB)/ DATA(64B)

2KB Row Buffer = 28 x 72 byte TAD = 28 data lines (32 bytes unused)

HEEEEEEEEEEEEEEEEEEEEEEE N NN
-

~

| 80B=TAG [8B] + DATA [64B] + IGNORE [8B] |
OR

| 80B = IGNORE [8B] + TAG [8B] + DATA [64B] |

ROW BUFFER

Figure 5: Architecture and Operation of Alloy Cache that int egrates Tag and Data (TAD) into a single entity called TAD. Th e size
of data transfers is determined by a 16-byte wide data-bus, h ence minimum transfer of 80 bytes for obtaining one TAD.

4. Latency-Optimized Cache Architecture dress is used to determine the set index of the Alloy Cache.
A non-power-of-two number of sets also means that the tag

While configuring the LH-Cache from a 29-way structure to €ntry needs to store full tags, which increases the sizeeof th
a direct-mapped structure improved performance (from 894d entry. We estimate that a tag entry of 8 bytes is more than
to 15%), it still left significant room for improvement com- Sufficient for the Alloy Cache (for a physical address space
pared to a latency-optimized solution (38%). One of theOf 48-bits, we need 42 tag bits, 1 valid bit, 1 dirty bit, and
main sources of this gap is the serialization latency due tén€ remaining 20 bits for coherence support and other opti-
tag lookup. We note that LH-Cache created a separate “tangzatlons). The minimum size of a TAD is thus 72 bytes (64
store” and “data-store” in the DRAM cache, similar to con-Pytes for data line and 8 bytes for tag). The Alloy Cache can
ventional caches. A separate tag-store and data-storesmak@ore 28 lines in a row, reaching close to the 29-lines per row
sense for a conventional cache, because they are indeed ph§®rage efficiency of the LH-Cache.

ically separate structures. The tag-store is optimizedador ~ The size of data transfer from the Alloy Cache is also af-
tency to support quick-lookups and can have multiple portstected by the physical constraints of the DRAM cache. For
whereas the data-store is optimized for density. We make afxample, the size of the databus assumed for our stacked
important observation that creating a separate contigtagus DRAM configuration is 16 bytes, which means transfers to-

store (similar to conventional caches) is not necessaryiwheand-from the cache occur at the granularity of 16 bytes. ;Thus
tags and data co-exist in the same DRAM array. it will take a burst of five transfers to obtain one TAD of 72

bytes. To keep our design simple, we restrict the transfers t
be aligned at the granularity of the data-bus size. Thisiregu
ment means that for odd sets of the Alloy Cache, the first 8

. . bytes are ignored and for even sets the last 8 bytes are @jnore
Obviating the separation of tag-store and data-store cin herye tag-check logic checks either the first eight bytes or the

us avoid the TSL overhead. This is the key insight in our prog, o eight bytes depending on the low bit of the set index.
posed cache structure, which we call thiboy Cache The

Alloy Cache tightly integrates aalloystag and data into a 4.2. Impact on Effective Bandwidth
single entity calledTAD (Tag and Data) On an access to

the Alloy Cache, it provides one TAD. If the tag obtained
from the TAD matches with the given line address, it indi-

cates a cache hit and the data line in the TAD is supplied. £

tag mismatch indicates cache miss. Thus, instead of havin?ecfmhe h't’t LH(;C?Che (;rar!sfers (3b|m?js %‘trt]agf-g 1.dtata N
two separate accesses (one to the “tag-store” and the other t placement update) reducing raw bandwidth of 8 into an

the “data-store”), Alloy Cache tightly integrates those - effective bandwidth of less than 2x. Whereas, Alloy Cache

cesses into a single unified access, as shown in Figu@n can provide an effective bandwidth of up-to 6.4x.

a cache miss, there IS a m!nor COSt. in that bandwidth is COI:]— 2Designing a general purpose modulo-computing unit incigh hArea
sumed transferring a data line that is not used. Note thst thiand latency overheads. However, here we compute modulorestect to
overhead is still substantially less than theeetag lines that @ constant, so it is much simpler and faster compared to ageperpose

. . . _ olution. In fact, modulo with respect to 28 (number of satsiie row of
must be transferred for both hits and misses in the LH-Cach lloy Cache) can be computed easily with eight 5-bit addeiagiresidue

Each TAD represents one set of the direct-mapped Alloyarithmetic (28=32-4). This value can then be removed froenitte address

; _ _~f_n 0 get row-id of DRAM cache. We estimate the calculation tetavo cycles
Cache. Given that the A”Oy Cache has a non power of twéand only a few hundred logic gates. We assume that the indexlaton of

r?umber of sets, we cannot simply use the ad_dress bits t_O idefe Alloy Cache happens in parallel with the L3 cache acdéss (we have
tify the set. We assume that a modulo operation on the line adp to 24 cycles to calculate the set index of the Alloy Cache).

4.1. Alloy Cache

Table 4 compares the effective bandwidth of servicing one
cache line from various structures. The raw bandwidths and
ffective bandwidths are normalized to off-chip memory. On

Table 4: Bandwidth comparison (relative to off-chip memory). 5. LOW'LatenCy Memory Access Prediction

Structure Raw Transfer per | Effective The MissMap approach focuses on getting perfect informa-
: Bandwidth | _access (hit) | Bandwidth tion about the presence of the line in the DRAM cache. There-
[Off-chip Memory | Ix | 6dbye | x| fore, it needs to keep track of information on a per-line ®asi
SRAMTag 8x 64 byte i Even if this incurred a storage of one-bit per line, givert tha
LH-Cache 8x (256+16) byte 1.8x . . .
IDEAL-LO x 64 byte Bx a large cache can have many millions of lines, the size of the
Alloy Cache 8x 80 byte 6.4% MissMap quickly gets into the megabyte regime. Given the

large size of the MissMap, it is better to avoid dedicated-sto
age and store it in an already existing on-chip structuré suc
4.3. Latency and Performance Impact as the L3 cache. Hence, it incurs a significant latency of L3
cache access (24 cycles). In this section, we will descitbe a
The Alloy Cache avoids tag serialization. Instead of twad-ser curate predictors that incur ne_gl|g|ble storage_and deldy.
. . . lay the background for operating such a predictor before de-
alized accesses, one each for tag and data, it providesdag an~ . . . i . A ;
. . , scribing the predictor. The ideas described in this Secien
data in a single burst of five transfers on the data-bus. Conm;_ . : o
. . derived from the prior work from Qureshi{].
paratively, a transfer of only the data line would take four
transfers, so the latency overhead of transferring TADe&St 5 1 gerial Access vs. Parallel Access
of only the data line is 1 bus cycle. However, this overhead is
negligible compared to the TSL overhead incurred by SRAMThe implicit assumption made in the LH-Cache study was
Tag (24 cycles) and LH-Cache (32-50 cycles). Because of thghat the system needs to ensure that there is a DRAM cache
avoidance of TSL, the average hit latency for Alloy Cache ismiss before accessing memory. This assumption is similar
significantly better (42 cycles), compared to both SRAM-Tagto how conventional caches operate. We call thisSkeal
(69 cycles) and LH-Cache (107 cycles). Access Model (SAMas the cache access and memory access
The Alloy Cache reduces the TSL but not the PSL, so thélet serialized. The SAM model is bandwidth-efficient as it
overall performance depends on how misses are handled. V§@nds only the cache misses to main memory, as shown in
consider three scenarios: First, no prediction (wait fgrae- ~ Figure?.
cess until cache miss is detected). Second, use the MissMap

(PSL of 24 cycles). Third, perfect predictor (100% accuracy| sam PAM
0 latency). Figures compares the speedup of these to th / CACHE
impractical SRAM-Tag design configured as 32-way. crp |l cacre V1SS Mevory cHIP

\MEMORY

Figure 7: Cache Access Models: Serial vs Parallel

= Alloy+NoPred = Alloy+MissMap =Alloy+Perfect =SRAM-Tags

Alternatively, we may choose to use a less bandwidth ef-
ficient model, which probes both the cache and memory in
parallel. We call this théParallel Access Model (PAMBSs
shown in Figure/. The advantage of PAM is that it removes
the serialization of the cache-miss detection latency ftioen
memory access path. To implement PAM correctly though,
we should give priority to cache content rather than the mem-
ory content, as cache content can be dirty. Also, if the mem-

Even without any predictor, the Alloy Cache provides aOry system returns data before the cache returns the outcome
21% performance improvement, much closer to the impracof the tag check, then we must wait before using the data as
tical SRAM-Tag. This is primarily due to the lower hit la- the line could still be present in a dirty state in the cache.
tency. A MissMap provides better miss handling, but the At first blush, it may seem wasteful to access the DRAM
24-cycle PSL is incurred on both hits and misses, so the pecache in case of a DRAM cache miss. However, for both LH-
formance is actually worse than not using a predictor. WithCache and Alloy Cache, the tags are located in DRAM. So,
a perfect predictor (100% accuracy and zero-cycle latencygven on a DRAM cache miss, we still need to read the tags
the Alloy Cache’s performance increases to 37%. The nexanyway to select a victim line and check if the victim is dirty
section describes effective single-cycle predictors ¢ihin (to schedule writeback). So, PAM does not have a significant
performance close to that with a perfect predictor. impact on cache utilization compared to a perfect predictor

Figure 6: Speedup with Alloy Cache.

5.2. To Wait or Not to Wait Memory Access Counter Table (MACThe address of the

L3 miss causing instruction is hashed (using folded-%at)[

into the MACT to obtain the desired MAC. All predictions
&hd updates happen based on this MAC. We found that sim-
ply using 256 entries (8-bit index) in the MACT is sufficient.
The storage overhead for this implementation of MAP-I is
Y 56*3-hit=96 bytes. We keep the MACT on a per-core basis
to avoid interference between the cores (for eight cores, to
%al overhead is only 96*8=768 bytes). Like MAP-G, MAP-I
does not make predictions for write requests.

We can get the best of both SAM and PAM by dynamically
choosing between the two, based on an estimate of wheth
the line is likely to be present in the cache or not. We call
this Dynamic Access Model (DAMJf the line is likely to

be present in the cache, DAM uses SAM to save on memo
bandwidth. And if the line is unlikely to be present, DAM
uses PAM to reduce latency. Note that DAM does not requir
perfect informatiorfor deciding between SAM and PAM, but

simply agood estimate To help with this estimate, we pro-
by ag P b Note that our predictors do not require that the instruction

pose a hardware-basétemory Access Predictor (MAPJo address be stored in the cache. For read misses, the instruc-

keep the latency of our predictor to a bare minimum, we cont-_ d4d £ mi g load is f ded with the mi
sider only simple predictors. ion address of miss causing load is forwarded wi e miss

request. As writeback misses are serviced with SAM, we do
5.3. Memory Access Predictor not need instruction addresses for writebacks.

The latency savings of PAM and the bandwidth savings of5 4. performance Results

SAM depend on the cache hit rate. If the cache hit rate is very

high, then SAM can reduce bandwidth. If the cache hit-rateFigure 8 shows the speedup from the Alloy Cache with dif-

is very low, then PAM can reduce latency. So, we can simplyferent memory access predictors. If we use a prediction of
use cache hit rate for memory-access prediction. Howevealways-cache-hit the system behaves like SAM, and if we use
it is well known that both cache misses and hits show good prediction of never-cache-hit the system behaves like PAM
correlation with previous outcomes][and exploiting such The perfect predictor assumes 100% accuracy at zero latency
correlation results in more effective prediction than diymp

using the hit-rate. For example, if H is hit and M is miss, |, =SAM PAM =MAP-G =MAP-I| = Perfect
and the last eight outcomes are MMMMHHHH, then using 1.7 /
the hit-rate would give an accuracy of 50%, but a simple Ias:_f@;- ig
time predictor would give an accuracy of 87.5% (assuming 1.4
the first M was predicted correctly). Based on this insiglt, w(% ey
propose to useklistory-Based Memory-Access Predictors 1.1

5.3.1. Global-History Based MAP (MAP-G) 0.9
Our basic implementation, callddAP Global or MAP-G,

uses a single saturating counter called Memory Access
Counter (MAC)that keeps track if the recent L3 misses re-Figure 8: Performance improvement of Alloy Cache for differ -
sulted in a memory access or a hit in the DRAM cache. Ifent Memory Access Predictors

the L3 miss results in a memory access, then the MAC is in-

cremented, otherwise MAC is decremented (both operations On average, there is a 14% gap between SAM (22.6%)

are done using saturating arithmetic). For prediction, MAP gnd perfect prediction (36.6%). PAM provides 29.6% per-
G simply uses the MSB of the MAC to decide if the L3 miss formance improvement but results in almost twice as many
should employ SAM (MSB=0) or PAM (MSB=1). We em- memory accesses as perfect prediction. MAP-G provides
ploy MAP-G on a per-core basis and use a 3-bit counter foBp.994 performance, bridging half the performance diffeeen
the MAC. Our results show that MAP-G bridges more thanpetween SAM and the perfect predictor. It thus performs sim-
half the performance gap between SAM and perfect prediGtar to PAM but without doubling the memory traffic. MAP-I
tion. Note that because writes are not on the critical paﬂ”provides an average of 35%, coming within 1.6% of the per-
(at this IeVel, writes are mainly due to d|rty evictions from formance of a perfect predictor_ ThUS, even though our pre-
on-chip caches), we do not make predictions for writes an@ictors are simple< 100 bytes per core) and low latency (1
simply employ SAM. cycle), they get almost all of the potential performance.

5.3.2. Instruction-Based MAP (MAP-I) For libquantum, MAP-G performs 3% better than the per-
We can improve the effectiveness of MAP-G by exploiting fect predictor. This happens because some of the mispredic-
the well-known observation that the cache hit/miss infermations avoid the row buffer penalty for later demand misses.
tion is heavily correlated with the instruction addresst tha For example, consider four lines A, B, C, D that map to the
caused the cache access §, 18. We call this implemen- same DRAM row. Only A and B are present in the DRAM
tation Instruction-Based MARYX simply MAP-I. Instead of cache. A, B, C, D are accessed in a sequence. If A and B
using a single MAC, MAP-I uses a table of MACs, called the are predicted correctly, C would incur a row opening penalty

when it goes to memory. If, on the other hand, A is mispre6. Analysis and Discussions

dicted it would avoid the row opening penalty for C. o]
6.1. Sensitivity to Cache Size

5.5. Prediction Accuracy Analysis The default DRAM cache size for all of our studies is 256MB.

To provide insights into the effectiveness of the predigtor N this section, we study the impact of different schemes as
we analyzed different outcome-prediction scenarios. @herthe cache size is varied from 64MB to 1GB. Figdrehows

are four cases: 1) L3 miss is serviced by memory and oufh€ average speedup with LH-Cache (29-way), SRAM-Tag
predictor predicts it as such, 2) L3 miss is serviced by men{32-way), Alloy Cache, and IDEAL-LO. IDEAL-LO is the la-
ory and our predictor predicts that it will be serviced by thete€ncy optimized theoretical design that transfers only i b
DRAM cache, 3) L3 miss is serviced by the DRAM cache On & cache hit and has perfect zero-latency predictor.

and our predictor predicts memory access, and 4) L3 miss is
serviced by the DRAM-cache and our predictor predicts it to 150
be so. Scenarios 2 and 3 denote mispredictions. However.4o
note that the cost of mispredictions are quite differenhiai t 5 122
two scenarios (scenario 2 incurs higher latency and sagenagj 125

= H-Cache SRAM-Tag ==Alloy-Cache ==IDEAL-LO

. . X . . Q 1.20
3 extra bandwidth). Tablgé shows the scenario distribution® ﬂg
for different predictors averaged across all workloads. 1.05]
1.00- ¢
64MB 128MB 256MB 512MB 1GB
Table 5: Accuracy for Different Predictors Figure 9: Performance impact across various cache size.
Serviced by Memory| Serviced by Cache|| Overall Alloy-Cache continues to significantly outperform impract ical

Prediction || Memory | Cache | Memory | Cache || Accuracy | SRAM-Tag and reaches close to the upperbound of IDEAL-LO.

SAM 0 51.8% | O 48.1% 48.1%

0, 0, 0, . T .
,\PA/X\Q_G 2;?0;2 27% igg;; 27 9% g;g;; The SRAM-Tag design suffers from Tag Serialization La-
MAP 28.3% | 3.5% 1.9% 26.2% 94.5% tency (TSL). LH-Cache suffers from both TSL and PSL due
Perfect 51.8% | 0% 0% 48.2% 100% to the MissMap. Alloy Cache avoids both TSL and PSL,

hence it outperforms both the LH-Cache and SRAM-Tag
i across all studied cache sizes. For the 1GB cache size, LH-
PAM almost doubles thelmemory traffic compared to othef~,-he provides an average improvement of 11.1%, SRAM-
approaches (48% of L3 misses are Wastgfully deemed to a?ég provides 29.3%, and Alloy Cache provides 46.1%. Thus,
cess memory when they are in-fact ;erwced by the DRAMAlloy Cache provides approximately 1.5 times the improve-
cache). Compared to a perfect predictor, MAP-1 has highep, et of the SRAM-Tag design. Note that the SRAM-Tag im-
latency for 3.5% of the L3 misses, and extraneous bangsiementation incurs an impractical storage overhead of SMB
width consumption for 1.9% of the L3 misses. For the re; o0 24MB. 48MB. and 96MB for DRAM cache sizes of
maining 94.5% of the L3 misses, MAP-I prediction is cor-g,mg" 128MB. 256MB. 512MB and 1GB respectively. Our
rect. Thus, even though our pred!ctors are quite_ SimF_"e“’ IOV‘broposal, on the other hand, requires less than one kilafyte
cost, and low-latency, they are still highly-effectiveppide giq1a0e and still outperforms SRAM-Tag significantly, con

high accuracy, and obtain almost all of the potential foF pergigianty reaching close to the performance of IDEAL-LO.
formance improvement from memory access prediction. Un-

less stated otherwise, the Alloy Cache is always implentente6.2. Impact on Hit Latency

with MAP-1in the remainder of this paper. The primary reason why the Alloy Cache performs so well

5.6. Implications on Memory Power and Energy is because it is designed from the ground-up to have lower
latency. FigurelO compares the average read latency of LH-
Accessing memory in parallel with the cache, as done in PAMCache, SRAM-Tags, and Alloy Cache. Note that SRAM-
and conditionally in DAM, increases power in memory sys-Tags incur a tag serialization latency of 24 cycles, and LH-
tem due to wasteful memory accesses. For PAM, all of theCache incurs MissMap delay of 24 cycles in addition to the
L3 misses would be sent to off-chip memory. Whereas withtag serialization latency (32-50 cycles). For the Alloy Bac
SAM, only the misses in the DRAM cache would get sent tothere is no tag serialization, except for the one additiboal
memory. From Tablé, it can be concluded that PAM would cycle for obtaining the tag with dataline. The average hit la
almost double the memory activity compared to SAM. Hencetency for LH-Cache is 107 cycles. The Alloy Cache cuts this
we do not recommend unregulated use of PAM (except akatency by 60%, bringing it to 43 cycles. This significant re-
a reference point). For DAM, our MAP-I predictor is quite duction causes Alloy Cache to outperform LH-Cache despite
accurate which means wasteful parallel accesses accaunt fihe lower hit rate. The SRAM-Tag incurs an average latency
only 1.9% of L3 misses, compared to 48% with PAM. of 67 cycles, hence lower performance than the Alloy Cache.

1.35
1.30
%1.25 7
T 1.201

Sl b 01 .
EITH P oreeaa

=LH-Cache SRAM-Tag = Alloy Cache

=|_H-Cache SRAM-Tag = Alloy Cache

40+
20+

Avg Hit Latency (Cycles)
(o2}
o

S ‘ ‘\‘Q/‘\ ST Ser T T O
o) AN 9/((\ N’ A7 Lol L O 8 S N
0- & &7 NS RE L@ DS @
S\ O AN O N NI . RS
& TEFFEIE L $ @ USRS

Figure 11: Performance impact for other SPEC workloads
Figure 10: Average Hit-Latency: LH-Cache 107 cycles, SRAM-

Tag 67 cycles, and Alloy Cache 43 cycles. 6.5. Impact of Odd Size Burst Length

6.3. Impact on Hit-Rate Our proposal assumes a burst length of five for the Alloy

Our design de-optimizes the cache architecture from ayghl Cache, transfernn.g 80 bytes on eie}ch.DRAM cache access.
However, conventional DDR specifications may restrict the

associative structure to a direct-mapped structure inrord

to reduce hit latency. We compare the hit rate of a highlye—burSt Iength_ t(.) a po_wer-of-two even for stacked DRAM. If
associative 29-way LH-cache with the direct-mapped AIIOysuch a restriction exists, then the Alloy Cache can stream ou
Cache. Tabl® shows the average hit rate for different cachebur.St of eight transfers (t(.)tal 1?8 bytes per access): Cale e\g

sizes. For a 256MB cache, the absolute difference in hi{”atIOn shows that a design with a burst of 8 provides 33%

rates between the 29-way LH-Cache and direct-mapped aperformance improvement on average, compared to 35% if
he burst length can be set to five. Thus, our assumption of

o . :
loy Caches is 7%. Thus, the Alloy Cache increases mlsse(?dd-size burst length has minimal impact on the performance

0, -
by 15% compared to LH-Cache. However, we show that th%enefit of Alloy Cache. Note that die-stacked DRAMs will

60% reduction in hit latency compared to LH-Cache provides; . . .
much more performance benefit than a slight performancy(e'y use different mterfacg_s thap conventional I.DDR.-The
arger number of through-silicon vias could make it easier t

degradation from the reduced hit rate. Tabkdso shows that . g . .
provide additional control signals to, for example, dynami

the hit-rate difference between a highly-associative eactd :
a direct-mapped cache reduces as the cache size is increag&l.xly specify the amount of data to be transferred.

(at 1GB it is 2.5%, i.e., 5% more misses). The reducing gags 6. Potential Room for Improvement
between the hit rate of a highly-associative cache andtdirec

mapped cache as the cache size is increased is well kriwn [Our proposal is a simple and practical design that signifi-
cantly outperforms the impractical SRAM-Tag design, but

Table 6: Hit Rate: Highly associative vs. direct mapped there is still room for improvement. Tablecompares the
Cache | LH-Cache | Alloy-Cache | Delta average performance of Alloy Cache + MAP-I, with (a) per-
Size (29-way) (1-way) Hit Rate fect Memory Address Prediction (Perf-Pred) (b) IDEAL-LO,
256 MB 55.2% 48.2% 7.0% a configuration that incurs minimum latency and bandwidth
°12MB | 59.6% 99.2% 4.4% and has Perf-Pred and (c) IDEAL-LO with no tag overhead,
1GB 62.6% 59.1% 2.5% so all of the 256MB space is available to store data.

6.4. Other Workloads Table 7: Room for improvement

. . . .) Design Performance

In our detailed studies, we only considered memory-intensi Improvement
workloads that have a speedup of at least 2x if L3 cache Alloy Cache + MAP-| 35.0%
is made perfect (100% hit rate). Figuié shows the per- Alloy Cache + PerfPred 36.6%
formance improvement from LH-Cache, SRAM-Tags, and IDEAL-LO 38.4%
IDEAL-LO + NoTagOverhead 41.0%

Alloy-Cache for the remaining workloads that spend at least
1% of time in memory. These benchmarks were executed in
rate mode as well. The bar labeled Gmean represents the ge\We observe that for our design we would get 1.6% addi-
ometric mean improvement over these fourteen workloads. tional performance improvement from a perfect predictatr an
As the potential is low, the improvements from all designsanother 1.8% from an IDEAL-LO cache. Thus, our practi-
are lowered compared to the detailed study. However, theal solution is within 3% of the performance of an idealized
broad trend remains the same. On average, LH-Cache indesign that places tags in DRAM. If we can come up with
proves performance by 3%, SRAM-Tag by 7.3%, and Alloya way to avoid the storage overhead of tags in DRAM, then
Cache by 11%. Thus, the Alloy Cache continues to outpetthere is another 2.6% improvement possible. While all of the
form both LH-Cache and SRAM-Tag. three optimizations show small opportunity for improvemen

we must be mindful that solutions to obtain these improve- Optimizing for latency enabled our proposed design to pro-
ments must incur minimal latency overheads, otherwise theide better performance than even an impractical option of
marginal improvements may be quickly negated. having the tag store in an SRAM array (24% improvement),
which would require tens of megabytes of storage. Thus, we
showed that simple designs can be highly effective if they ca

We al luated t Allov Caches that st " exploit the constraints of the given technology.
€ also evajuated wo-way Alloy l-aches that Stream outtwo ypp; e the technology and constraints of today are quite dif-
TAD entries on each access. While this improved the h|t—rati

¢ 48.2% t0 49 7% tound that the hit | . erent from the 1980’s, in spirit, the initial part of our vkos
from 43 °|t° .480’ W? ou_rll_hlt att Z itlatency mcr((jaatl)se imilar to that of Mark Hill ;] from twenty-five years ago,
rom 43 cycles to © cycles. This was due to Increased bur aking a case for direct-mapped caches and showing that
length &2x), associated bandwidth consumpties®k), and

6.7. How About Two-Way Alloy Caches?

e _ they can outperform set-associative caches. Indeed, some-
the reduction in row buffer hit rate. Overall, the perforroan y e

impact of degraded hit latency outweighs the marginal im-

times“Big and Dumb is Better[1].

provement from hit-rate. We envision that future reseaiche Acknowledgments

will look at reducing conflict misses in DRAM caches (and
we encourage them to do so); however, we advise them
pay close attention to the impact on hit latency.

tghanks to André Seznec and Mark Hill for comments on ear-
lier versions of this paper. Moinuddin Qureshi is suppoltigd

NetApp Faculty Fellowship and Intel Early CAREER award.

7. Conclusion

This paper analyzed the trade-offs in architecting DRAM [1]
caches. We compared the performance of a recently-proposed
design (LH-Cache) and an impractical SRAM-based Tag- [2]
Store (SRAM-Tags) with a latency-optimized design, and
show that optimizing for latency provides a much more ef- [3]
fective DRAM cache than optimizing simply for hit-rate. To 4
obtain a practical and effective latency-optimized destis

paper went through a three-step process: 5]

1. We showed that simply converting the DRAM cache from [6]

References

Quote from Mark Hill's Bio (short link http://tinyurl.corhillbio): .
https://www.cs.wisc.edu/event/mark-hill-efficientyrabling-
conventional-block-sizes-very-large-die-stackedithaaches.

X. Dong, Y. Xie, N. Muralimanohar, and N. P. Jouppi. Simdut
Effective Heterogeneous Main Memory with On-Chip Memoryn€o
troller Support. INSupercomputing2010.

M. Farrens, G. Tyson, J. Matthews, and A. R. Pleszkun. Alified
approach to data cache managemenMIGRO-28 1995.

M. Ghosh and H.-H. S. Lee. Smart Refresh: An Enhanced Mgmo
Controller Design for Reducing Energy in Conventional abdZie-
Stacked DRAMs. IMVIICRO-4Q 2007.

A. Hartstein, V. Srinivasan, T. R. Puzak, and P. G. Emmach@ miss
behavior: is it sqrt(2)? €omputing Frontiers2006.

M. D. Hill. A case for direct-mapped cachetEEE Computer Dec

high associativity to direct mapped can itself provide good 7, 1988

performance improvement. For example, configuring LH-
Cache from 29-way to 1-way enhances the performance
improvement from 8.7% to 15%. This happens because of [8]

the lower latency of a direct-mapped cache as well as the[g] G

ability to exploit row buffer hits.

2. Simply having a direct-mapped structure is not enough
A cache design that creates a separate “tag-store” anHO]
“data-store” still incurs the tag-serialization latenaxee [11]
for direct-mapped caches. To avoid this tag serialization
latency, we propose a cache architecture calledMhey [12]
Cachethat fuses the data and tag together into one storage
entity, thus converting two serialized accesses for tag and, ,
data into a single unified access. We show that a direct-

mapped Alloy Cache improves performance by 21%. [14]

3. The performance of the Alloy Cache can be improved by, 15]
handling misses faster, i.e., sending them to memory be-
fore completing the tag check in the DRAM cache. How- [16]
ever, doing so with a MissMap incurs megabytes of stor-
age overhead and tens of cycles of latency, which negatett’!
much of the performance benefit of handling misses early.
Instead, we present a low-latency (single cycle), low stor/18l
age overhead (96 bytes per core), highly accurate (95%
accuracy) hardware-basétemory Access Predictaghat 19
enhances the performance benefit of Alloy Cache to 35%.

X. Jiang, N. Madan, L. Zhao, M. Upton, R. lyer, S. Makingni
D. Newell, Y. Solihin, and R. Balasubramonian. CHOP: Adagpti
filter-based dram caching for CMP server platforms. HRCA-16

%O:k/clj Khan, D. A. Jiménez, D. Burger, and B. Falsafi. Usiread
blocks as a virtual victim cache. PACT-19 2010.

. H. Loh and M. D. Hill. Addendum for “Efficiently
enabling conventional block sizes for very large die-stack
DRAM caches”. http://www.cs.wisc.edu/multifacet/pagiemicroll_
missmap_addendum.pdf.

G. H. Loh and M. D. Hill. Efficiently enabling conventiahblock
sizes for very large die-stacked DRAM cachesMICRO-44 2011.

G. H. Loh and M. D. Hill. Supporting very large DRAM cachwith
compound access scheduling and missmaptE&E Micro TopPicks

2012.

N. Madan, L. Zhao, N. Muralimanohar, A. Udipi, R. Bal#ssamonian,
R. lyer, S. Makineni, and D. Newell. Optimizing Communicettiand
Capacity in a 3D Stacked Reconfigurable Cache HierarchidPGA-
15, 2009.

] J. Meza, J. Chang, H. Yoon, O. Mutlu, and P. Ranganath&n-

abling efficient and scalable hybrid memories using finerglarity
dram cache manageme@omputer Architecture Lettereb 2012.
E. Perelman et al. Using SimPoint for accurate and efficsimulation.
ACM SIGMETRICS Performance Evaluation Reyi2@03.

M. K. Qureshi. Memory access prediction. U.S. Patenpligation
Number 12700043, Filed Feb 2010, Publication Aug 2011.

M. K. Qureshi, A. Jaleel, Y. N. Patt, S. C. Steely Jr., ahcEmer.
Adaptive insertion policies for high-performance cachihnglSCA-34
pages 167-178, 2007.

A. Seznec and P. Michaud. A case for (partially) taggedrgetric
history length branch prediction. ournal of Instruction Level Par-
allelism, 2006.

C.-J. Wu, A. Jaleel, W. Hasenplaugh, M. Martonosi, SS&ely, Jr.,
and J. Emer. Ship: signature-based hit predictor for higfopmance
caching. INMICRO-44 2011.

L. Zhao, R. lyer, R. lllikkal, and D. Newell. Exploring®AM cache
architectures for CMP server platforms. I®CD, 2007.

	Introduction
	Background and Motivation
	SRAM-Tag Design
	Tags-in-DRAM: The LH-Cache
	IDEAL Latency-Optimized Design
	Raw Latency Breakdown
	Bandwidth Benefits of DRAM Cache
	Performance Potential
	De-Optimizing for Performance

	Experimental Methodology
	Configuration
	Workloads

	Latency-Optimized Cache Architecture
	Alloy Cache
	Impact on Effective Bandwidth
	Latency and Performance Impact

	Low-Latency Memory Access Prediction
	Serial Access vs. Parallel Access
	To Wait or Not to Wait
	Memory Access Predictor
	Global-History Based MAP (MAP-G)
	Instruction-Based MAP (MAP-I)

	Performance Results
	Prediction Accuracy Analysis
	Implications on Memory Power and Energy

	Analysis and Discussions
	Sensitivity to Cache Size
	Impact on Hit Latency
	Impact on Hit-Rate
	Other Workloads
	Impact of Odd Size Burst Length
	Potential Room for Improvement
	How About Two-Way Alloy Caches?

	Conclusion

